
A regression model describes a relation between a vector of d real valued input variables 
(features) ( )dxxxx ,...,, 21=  and a single real valued output variable y. Using a finite number n of 
training observations (data cases or data points) ),( )()( ii yx , ni ,...,2,1=  one wants to build a model 
F that allows predicting the output value for yet unseen input values as closely as possible. 
 
 

Radial Basis Function interpolation 
 

RBF was originally developed for scattered multivariate data interpolation (Hardy 1971). It uses 
a series of basis functions that are symmetric and centred at each sampling point. Radial basis 
functions are a special class of functions with their main feature being that their response decreases 
(or increases) monotonically with distance from a central point (Queipo et al. 2005). The centre, the 
distance scale, and the precise shape of the radial function are parameters of the model. RBF 
interpolation can be expressed as follows (Jin et al. 2002): 
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where μ  is either a polynomial model or a constant value; λ  are coefficients calculated by solving 
linear equations; φ  is a basis function, for which there are many different choices, such as 
biharmonic, multiquadric, inverse multiquadric, thin plate spline, Gaussian, etc. Detailed review on 
RBF methods can be found in (Powell 1987, Gutmann 2001). 

For biharmonic basis functions 
 ( ) distdist =φ , (2) 
for multiquadric basis functions 
 ( ) 22 cdistdist +=φ , (3) 
for inverse multiquadric basis functions 
 ( ) 221 cdistdist +=φ , (4) 
and for polyharmonic basis functions 
 ( ) ( ) ( )2222 ln cdistcdistdist ++=φ  (5) 
where the shape parameter c is kept constant, e.g. as 1 (Acar & Rais-Rohani 2009) or as 1/n (Colaco 
et al. 2007). And the μ  is defined as a constant value – mean of y: 
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Gaussian basis functions are defined as follows 
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where δ  is the radius (also called smoothing parameter). 
In some cases in order to avoid matrix singularity the RBF may be augmented by including a 

polynomial function such that 
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where m is the total number of terms in the polynomial and bj, j = 1,2,…,m is the corresponding 
coefficient. A detailed discussion on the polynomial functions that may be used can be found in 
(Krishnamurthy 2003). 

As now the equation (1) is underdetermined (there are more parameters to be solved than the 
number of equations created), the orthogonality condition is further imposed on coefficients λ  as 
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Combining equations (1) and (9) in matrix form gives 
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where ( ) ,,...,2,1,,...,2,1,)()( njnixxA jiij ==−= φ ,,...,2,1,,...,2,1),( )( mjnixpP ijij ===  

[ ] ,...21
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T

nbbbb =  Equation (10) consists of (n + m) equations and its solution 
gives coefficients λ  and b for the RBF in the form of (1). 
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