

M5PrimeLab

M5' regression tree, model tree, and tree ensemble toolbox for

Matlab/Octave

ver. 1.8.0

Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

User's manual

November, 2020

Copyright © 2010-2020 Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

 2

CONTENTS

1. INTRODUCTION... 3

2. AVAILABLE FUNCTIONS ... 4

2.1. Function m5pbuild .. 4

2.2. Function m5pparams .. 6

2.3. Function m5pparams2 .. 8

2.4. Function m5pparamsensemble .. 9

2.5. Function m5pparamsensemble2 .. 10

2.6. Function m5ppredict .. 11

2.7. Function m5ptest .. 12

2.8. Function m5pcv ... 12

2.9. Function m5pprint .. 13

2.10. Function m5pplot .. 14

3. EXAMPLES OF USAGE .. 16

 3.1. Growing regression trees, model trees, and decision rules ... 16

 3.2. Growing ensembles of trees .. 20

4. REFERENCES ... 25

 3

1. INTRODUCTION

What is M5PrimeLab

M5PrimeLab is a Matlab/Octave toolbox for building regression trees and model trees using

M5' method (Wang & Witten, 1997; Quinlan, 1992) as well as building ensembles of M5' trees

using Bagging (Breiman, 1996), Random Forests (Breiman, 2001; Breiman, 2002), and Extremely

Randomized Trees (also known as Extra-Trees) (Geurts et al., 2006). The built trees can also be

linearized into decision rules either directly or using the M5'Rules method (Holmes et al., 1999).

With this toolbox you can build trees and decision rules either individually or in ensembles and

test them on separate test sets or using Cross-Validation, use them for prediction, assess variable

importance, decompose their predictions into input variable contributions, as well as print and plot

the structure. M5PrimeLab accepts input variables to be continuous, binary, and categorical, as well

as manages missing values.

Note that regardless of which ensembling algorithm one chooses, M5PrimeLab builds the

individual trees according to the M5' method, i.e., usage of the Standard Deviation Reduction

criterion as well as how the categorical input variables are dealt with and other details specific to

the method are not reconfigurable. Also see the note on Extra-Trees below.

This user's manual provides overview of the functions available in the M5PrimeLab.

M5PrimeLab can be downloaded at http://www.cs.rtu.lv/jekabsons/.

The toolbox code is licensed under the GNU GPL ver. 3 or any later version.

A note on Extremely Randomized Trees implementation in M5PrimeLab

The current implementation of Extra-Trees in M5PrimeLab deals with categorical variables

with more than two categories differently from how the standard Extra-Trees method does it.

In standard Extra-Trees (Geurts et al., 2006), if a categorical variable is chosen for splitting, two

random subsets of categories are drawn – one from the list of categories that reached the node and

the other from the list that did not reach the node. The splitting point is then the union of those two

subsets versus all the other categories.

In the M5PrimeLab implementation of Extra-Trees, such categorical variables are automatically

replaced with synthetic binary variables in accordance with the M5' method before any building of

trees is even started. The number of the synthetic binary variables is equal to the number of

categories minus one. If such a categorical variable is chosen for splitting, the splitting point is then

defined using one of those synthetic binary variables, chosen randomly.

The more such categorical variables are in the data, the potentially more different the results

from the standard Extra-Trees.

However, note that continuous and binary variables are dealt with exactly in the same way as in

standard Extra-Trees.

Feedback

For any feedback on the toolbox including bug reports feel free to contact me via the email

address given on the title page of this user's manual.

Citing the M5PrimeLab toolbox

Jekabsons G., M5PrimeLab: M5' regression tree, model tree, and tree ensemble toolbox for

Matlab/Octave, ver. 1.8.0, 2020, available at http://www.cs.rtu.lv/jekabsons/

http://www.cs.rtu.lv/jekabsons/

 4

2. AVAILABLE FUNCTIONS

M5PrimeLab toolbox provides the following list of functions:

 m5pbuild – builds M5' regression tree, model tree, or ensemble of trees; the tree can also be

linearized into decision rules; for tree ensembles, can also assess input variable importances

as well as provide data for ensemble interpretation;

 m5pparams, m5pparams2 – creates configuration for building M5' trees or decision rules;

 m5pparamsensemble, m5pparamsensemble – creates configuration for building ensembles

of trees;

 m5ppredict – makes predictions using M5' tree, decision rule set, or ensemble of trees; can

also compute each input variable's contribution to each prediction;

 m5ptest – tests M5' tree, decision rule set, or ensemble of trees on a test data set;

 m5pcv – tests M5' performance using Cross-Validation;

 m5pprint – prints M5' tree or decision rule set in a human-readable form;

 m5pplot – plots M5' tree.

2.1. Function m5pbuild

Purpose:
Builds M5' regression tree, model tree, or ensemble of trees.

The trees can also be linearized into decision rules.

Call:
[model, time, ensembleResults] = m5pbuild(Xtr, Ytr, trainParams, isBinCat,

trainParamsEnsemble, keepNodeInfo, verbose)

All the input arguments, except the first two, are optional. Empty values are also accepted (the

corresponding defaults will be used).

Input:

Xtr, Ytr : Xtr is a matrix with rows corresponding to observations and columns

corresponding to input variables. Ytr is a column vector of response

values. Input variables can be continuous, binary, as well as categorical

(indicated using isBinCat). All values must be numeric. Categorical

variables with more than two categories will be automatically replaced with

synthetic binary variables (in accordance with the M5' method). Missing

values in Xtr must be indicated as NaN.

trainParams : A structure of training parameters for the algorithm. If not provided,

defaults will be used (see function m5pparams for details).

isBinCat : A vector of flags indicating type of each input variable – either continuous

(false) or categorical (true) with any number of categories, including

binary. The vector should be of the same length as the number of columns

in Xtr. m5pbuild then detects all the actually possible values for

categorical variables from the training data. Any new values detected later,

i.e., during prediction, will be treated as NaN. By default, the vector is

created with all values equal to false, meaning that all the variables are

treated as continuous.

trainParamsEnsemble : A structure of parameters for building ensemble of trees. If not

provided, a single tree is built. See function m5pparamsensemble for

 5

details. This can also be useful for variable importance assessment. See

user's manual for examples of usage.

 Note that the ensemble building algorithm employs random number

generator for which you can set seed before calling m5pbuild.

keepNodeInfo : Whether to keep models (in model trees) and response values (in

regression trees) in interior nodes of trees. And whether to keep indices of

training observations that reached each node and standard deviation of each

node. These are useful for further analysis and plotting. Default value =

true. If set to false, the information is removed from the trees so that the

structure takes up less memory. Note that interior nodes of smoothed trees

will not contain models or response values regardless of the value of this

parameter because only the models in the leaves are smoothed. Also note

that the standard deviations are saved before doing smoothing.

verbose : Whether to output additional information to console. (default value =

true)

Output:

model : A single M5' tree (or a decision rule set) or a cell array of M5' trees (or

decision rule sets) if an ensemble is built. A structure defining one tree (or a

decision rule set) has the following fields:

binCat : Information regarding original (continuous / binary / categorical) input

variables, transformed (synthetic binary) input variables, possible values

for categorical input variables and other information.

trainParams : A structure of training parameters for the algorithm (updated if any values

are chosen automatically).

tree, rules, outcomes : Structures and arrays defining either the built tree or the

generated decision rules.

time : Algorithm execution time (in seconds).

ensembleResults : A structure of results for ensembles of trees or decision rules. Not

available for Extra-Trees. The structure has the following fields:

OOBError : Out-of-bag estimate of prediction Mean Squared Error of the ensemble

after each new tree is built. The number of rows is equal to the number of

trees built. OOBError is available only if getOOBError in

trainParamsEnsemble is set to true. Note that it's possible to calculate

mean out-of-bag predictions (and therefore out-of-bag errors for each

individual training data observation) by summing the columns of

OOBContrib.

OOBIndices : Logical matrix. For each tree (column) indicates which observations were

out-of-bag (and thus used in computing OOBError). The number of rows in

OOBIndices is equal to the number of rows in Xtr and Ytr. OOBIndices is

available only if getOOBError or getOOBContrib in

trainParamsEnsemble is set to true.

OOBNum : Number of times observations were out-of-bag (and thus used in

computing OOBError). The length of OOBNum is equal to the number of

rows in Xtr and Ytr. OOBNum is available only if getOOBError or

getOOBContrib in trainParamsEnsemble is set to true.

OOBContrib : A matrix allowing interpreting ensembles in accordance with the Forest

Floor methodology (Welling et al., 2016). See also example of usage in

Section 3.2.

 It is a matrix of contributions of each input variable to the response for each

Xtr row in terms of response value changes along the prediction path of a

 6

tree (averaged over the whole ensemble) so that Yoob = in-bag_mean +

x1_contribution + x2_contribution + ... + xn_contribution, where Yoob is

prediction of response for out-of-bag observation. OOBContrib has the

same number of columns as Xtr plus one, the last column being the in-bag

response mean. The sum of columns of OOBContrib is equal to Yoob of the

whole ensemble for each row of Xtr.

 OOBContrib is available only if getOOBContrib in trainParamsEnsemble

is set to true.

 Note that it's also possible to compute contributions and explain predictions

for new data (including with single trees) – see function m5ppredict.

varImportance : Variable importance assessment. Calculated when out-of-bag data of a

variable is permuted. A matrix with four rows and as many columns as

there are columns in Xtr. First row is the average increase of out-of-bag

Mean Absolute Error (MAE), second row is standard deviation of the

average increase of MAE, third row is the average increase of out-of-bag

Mean Squared Error (MSE), fourth row is standard deviation of the average

increase of MSE. The final variable importance estimate is often calculated

by dividing each MAE or MSE by the corresponding standard deviation.

Bigger values then indicate bigger importance of the corresponding

variable. See user's manual for example of usage. varImportance is

available only if getVarImportance in trainParamsEnsemble is > 0.

Remarks:

M5' method builds a tree in two phases: growing phase and pruning phase. In the first phase the

algorithm starts with one leaf node and recursively tries to split each leaf node so that intra-subset

variation in the response variable’s values down each branch is minimized (i.e., Standard Deviation

Reduction (SDR) is maximized).

At the end of the first phase we have a large tree that typically overfits the data, and so a

pruning phase is engaged. In this phase, the tree is pruned back from each leaf until an estimate of

the expected error that will be experienced at each node cannot be reduced any further.

Finally, the tree is smoothed (optionally). In M5PrimeLab, smoothing is done in m5pbuild,

right after the pruning phase (instead of doing it only at the moment of prediction, i.e., in

m5ppredict), by incorporating regression models of the interior nodes into regression models of

each leaf. Smoothing can increase accuracy of predictions but it also makes the trees more difficult

to interpret, as smoothed trees have more complex models at their leaves (they can even look as if

dropping of terms never occurred).

2.2. Function m5pparams

Purpose:

Creates configuration for building M5' trees or decision rules. The output structure is for further

use with m5pbuild and m5pcv functions.

Call:
trainParams = m5pparams(modelTree, minLeafSize, minParentSize, prune,

smoothingK, splitThreshold, aggressivePruning, maxDepth, eliminateTerms,

vanillaSDR, extractRules)

All the input arguments of this function are optional. Empty values are also accepted (the

corresponding defaults will be used).

 7

It is quite possible that the default values for minLeafSize and minParentSize will be far from

optimal for your data.

For a typical configuration of ensembles of regression trees (whether Bagging, Random Forests,

or Extra-Trees), call trainParams = m5pparams(false, 1, 5, false, 0, 1E-6);

Input:

modelTree : Whether to build a model tree (true) or a regression tree (false) (default

value = true). Model trees combine a conventional regression tree with the

possibility of linear regression functions at the leaves. However, note that

whether a leaf node actually contains more than just a constant, depends on

pruning and smoothing (if both are disabled, a model tree will not differ

from a regression tree).

minLeafSize : The minimum number of training observations a leaf node may represent.

If prune = true, allowed minimum is 2. Otherwise, allowed minimum is 1.

Default value = 2 (Wang & Witten, 1997). If built trees contain too many

too small leaves (especially in the top layers of the tree), consider

increasing this number. This will also result in smaller trees that are less

sensitive to noise (but can also be underfitted).

minParentSize : The minimum number of observations a node must have to be considered

for splitting, i.e., the minimum number of training observations an interior

node may represent. Default value = minLeafSize × 2 (Wang & Witten,

1997). Values lower than that are not allowed. If built trees are too large or

overfit the data, consider increasing this number – this will result in smaller

trees that are less sensitive to noise (but can also be underfitted). For

ensembles of unpruned trees, the typical value is 5 (with minLeafSize = 1)

(Breiman, 2001).

prune : Whether to prune the tree (default value = true). Pruning is done by

eliminating leaves and subtrees in regression trees and model trees as well

as, if eliminateTerms = true, by eliminating terms in models of model

trees (using sequential backward selection algorithm), if doing so improves

the estimated error.

smoothingK : Smoothing parameter. Set to 0 to disable smoothing (default). Smoothing

is usually not recommended for regression trees but can be useful for model

trees. It tries to compensate for sharp discontinuities occurring between

adjacent nodes of the tree. The larger the value compared to the number of

observations reaching the nodes, the more pronounced is the smoothing. In

case studies by Quinlan, 1992, as well as Wang & Witten, 1997, this almost

always had a positive effect on model trees (with smoothingK = 15).

Smoothing is performed after tree building and pruning, therefore this

parameter does not influence those processes. Unfortunately, smoothed

trees are harder to interpret.

splitThreshold : A node is not split if the standard deviation of the values of response

variable at the node is less than splitThreshold of the standard deviation

of response variable for the entire training data (default value = 0.05 (i.e.,

5%) (Wang & Witten, 1997)).

aggressivePruning : By default, pruning is done as proposed by Quinlan, 1992, and Wang &

Witten, 1997, but you can also employ more aggressive pruning, similar to

the one that is implemented in Weka's version of M5' (Hall et al., 2009).

Simply put, in the aggressive pruning version, while estimating error of a

subtree, one penalizes not only the number of parameters of regression

models at its leaves but also its total number of splits. Aggressive pruning

produces smaller trees that are less sensitive to noise and potentially easier

 8

to interpret. However, this can also result in underfitting. (default value =

false)

maxDepth : Maximum depth of a tree. Controlling tree complexity using this

parameter is not typical for M5' trees. (default value = Inf, i.e., no

limitation)

eliminateTerms : Whether to eliminate terms of models in model trees using the sequential

backward selection algorithm (default value = true). The parameter has no

effect if prune = false.

vanillaSDR : Whether to calculate the Standard Deviation Reduction criterion using the

“vanilla” formula from Quinlan, 1992 or the updated formula from Wang

& Witten, 1997 (default value = false, i.e., the updated formula is used).

The difference between those two formulas is that the updated one tries to

take into account the number of missing values for each input variable, as

well as the number of categories for each categorical input variable. See

equations (1) and (5) in Wang & Witten, 1997. Note that the updated

formula is actually fairly ad hoc and not well studied.

 This parameter has no effect if the data has no missing values and no

categorical variables with more than two categories.

extractRules : M5' trees can also be used for generating decision rules. M5PrimeLab

provides two methods for doing it. Set extractRules = 1 to extract rules

from one tree directly. Each leaf is made into a rule by making a

conjunction of all the tests encountered on the path from the root to that

leaf. This produces rules that are unambiguous in that it doesn’t matter in

what order they are executed. The rule set always makes exactly the same

predictions as the original tree, even with unknown values and smoothing.

 Set extractRules = 2 to use the M5'Rules method (Holmes et al., 1999).

With this method, the rules are generated iteratively. In each iteration, a

new tree is built using the training data and one leaf that has the largest data

coverage is made into a rule. Then the tree is discarded and all observations

covered by the rule are removed from the data. The process is repeated

until the data is empty. M5'Rules produces smaller rule sets than the simple

extraction method, however it cannot use the M5' smoothing technique

(parameter smoothingK is ignored).

 (default value = 0, i.e., no rules are extracted)

Output:

trainParams : A structure of parameters for further use with m5pbuild and m5pcv

functions containing the provided values (or defaults, if not provided).

2.3. Function m5pparams2

Purpose:
Creates configuration for building M5' trees or decision rules. The output structure is for further

use with m5pbuild and m5pcv functions.

This function is an alternative to function m5pparams for supplying parameters as name/value

pairs.

Call:
trainParams = m5pparams2(varargin)

 9

Input:

varargin : Name/value pairs for the parameters. For the list of the names, see

description of function m5pparams.

Output:

trainParams : A structure of parameters for further use with m5pbuild and m5pcv

functions containing the provided values (or defaults, if not provided).

2.4. Function m5pparamsensemble

Purpose:

Creates configuration for building ensembles of M5' trees using Bagging, Random Forests, or

Extra-Trees. The output structure is for further use with m5pbuild and m5pcv functions.

Call:
trainParamsEnsemble = m5pparamsensemble(numTrees, numVarsTry,

withReplacement, inBagFraction, extraTrees, getOOBError, getVarImportance,

getOOBContrib, verboseNumIter)

All the input arguments of this function are optional. Empty values are also accepted (the

corresponding defaults will be used). The first five arguments control the behaviour of the ensemble

building method. The last four arguments enable getting additional information.

The default values are prepared for building Random Forests. Changes required for a Bagging

configuration: numVarsTry = 0. Changes required for a typical Extra-Trees configuration:

numVarsTry = 0, extraTrees = true.

Remember to configure how individual trees are built for the ensemble (see description of

m5pparams). See Section 3.2 for examples of usage.

Input:

numTrees : Number of trees to build (default value = 100). Should be set so that every

data observation gets predicted at least a few times.

numVarsTry : Number of input variables randomly sampled as candidates at each split in

a tree. Set to -1 (default) to automatically sample one third of the variables

(typical for Random Forests in regression). Set to 0 to use all variables

(typical for Bagging and Extra-Trees in regression). Set to a positive

integer if you want some other number of variables to sample. To select a

good value for numVarsTry in Random Forests, Leo Breiman suggests

trying the default value and trying a value twice as high and half as low

(Breiman, 2002).

 In Extra-Trees, this parameter is also called attribute selection strength

(Geurts et al., 2006).

 Note that while using this parameter, function m5pbuild takes the total

number of input variables directly from supplied training data set, before

any synthetic binary variables are made (from categorical variables with

more than two categories). Also note that m5pbuild will always round the

numVarsTry value down.

withReplacement : Should sampling of in-bag observations for each tree be done with (true)

or without (false) replacement? Both, Bagging and Random Forests

typically use sampling with replacement. (default value = true)

inBagFraction : The fraction of the total number of observations to be sampled for in-bag

set. Default value = 1, i.e., the in-bag set will be the same size as the

 10

original data set. This is the typical setting for both, Bagging and Random

Forests. Note that for sampling without replacement inBagFraction

should be lower than 1 so that out-of-bag set is not empty.

extraTrees : Set to true to build Extra-Trees (default = false). If enabled, parameters

withReplacement, inBagFraction, getOOBError, and

getVarImportance are ignored. This is because Extra-Trees method does

not use out-of-bag data, i.e., all trees are build using the whole available

training data set.

getOOBError : Whether to perform out-of-bag error calculation to estimate prediction

error of the ensemble (default value = true). The result will be stored in

the output argument ensembleResults of function m5pbuild. Disable for

speed.

getVarImportance : Whether to assess importance of input variables (by calculating the

average increase in error when out-of-bag data of a variable is permuted)

and how many times the data is permuted per tree for the assessment.

Default value = 1. Set to 0 to disable and gain some speed. Numbers larger

than 1 can give slightly more stable estimate, but the process is even

slower. The result will be stored in the output argument ensembleResults

of function m5pbuild.

getOOBContrib : Whether to compute input variable contributions in out-of-bag data

according to the Forest Floor methodology. Available only for ensembles

of unsmoothed regression trees and only if m5pbuild is called with

keepNodeInfo = true. The result will be stored in the output argument

ensembleResults of function m5pbuild. For details, see description of

OOBContrib.

verboseNumIter : Set to some positive integer to print progress every verboseNumIter

trees. Set to 0 to disable. (default value = 50)

Output:

trainParamsEnsemble : A structure of parameters for further use with m5pbuild and m5pcv

functions containing the provided values (or defaults, if not provided).

Remarks:
See the note in Section 1 on the most important difference between the implementation of

Extra-Trees in M5PrimeLab and standard Extra-Trees.

2.5. Function m5pparamsensemble2

Purpose:

Creates configuration for building ensembles of M5' trees using Bagging, Random Forests, or

Extra-Trees. The output structure is for further use with m5pbuild and m5pcv functions.

This function is an alternative to function m5pparamsensemble for supplying parameters as

name/value pairs.

Call:
trainParamsEnsemble = m5pparamsensemble2(varargin)

Input:

varargin : Name/value pairs for the parameters. For the list of the names, see

description of function m5pparamsensemble.

 11

Output:

trainParamsEnsemble : A structure of parameters for further use with m5pbuild and m5pcv

functions containing the provided values (or defaults, if not provided).

2.6. Function m5ppredict

Purpose:

Predicts response values for the given query points Xq using M5' tree, decision rule set, or

ensemble of trees. For unsmoothed regression trees (whether in ensembles or as individual trees),

can also provide a matrix of input variable contributions to the response value for each row of Xq.

Call:
[Yq, contrib] = m5ppredict(model, Xq)

Input:

model : M5' model, decision rule set, or a cell array of M5' models, if ensemble of

trees is to be used.

Xq : A matrix of query data points. Missing values in Xq must be indicated as

NaN.

Output:

Yq : A column vector of predicted response values. If model is an ensemble,

Yq is a matrix whose rows correspond to Xq rows (i.e., observations) and

columns correspond to each ensemble size (i.e., the increasing number of

trees), the values in the very last column being the values for a full

ensemble.

contrib : Available only for unsmoothed regression trees (whether in ensembles or

as single trees) and only if m5pbuild was called with keepNodeInfo =

true.

 A matrix of contributions of each input variable to the response for each Xq

row in terms of response value changes along the prediction path of a tree

so that Yq = training_set_mean + x1_contribution + x2_contribution + ... +

xn_contribution. contrib has the same number of columns as Xq plus one,

the last column being the training set response mean for single trees or in-

bag response mean for ensembles. The sum of columns of contrib is equal

to Yq (or to the last column of Yq for ensembles).

 This allows interpreting single trees and whole ensembles as well as

explaining their predictions. The implemented method is sometimes also

called “feature contribution method” (Saabas, 2014/2015 (see this for the

simplest explanation); Welling et al., 2016; Kuz’min et al., 2011;

Palczewska et al., 2013). See also examples of usage in Section 3.

 Note that this function does not decompose contributions according to the

Forest Floor methodology (Welling et al., 2016) as contrib is computed

using the given Xq, instead of the out-of-bag data. For decomposition in

accordance with Forest Floor, see output argument

ensembleResults.OOBContrib of function m5pbuild.

Remarks:
1. If the data contains categorical variables with more than two categories, they are

transformed into synthetic binary variables in exactly the same way as m5pbuild does it.

2. Any previously unseen values of binary or categorical variables are treated as NaN.

 12

2.7. Function m5ptest

Purpose:

Tests M5' tree, decision rule set, or ensemble of trees on a test data set (Xtst, Ytst).

Call:
results = m5ptest(model, Xtst, Ytst)

Input:

model : M5' model, decision rule set, or a cell array of M5' models (if ensemble of

trees is to be tested).

Xtst, Ytst : Xtst is a matrix with rows corresponding to testing observations, and

columns to corresponding input variables. Ytst is a column vector of

response values. Missing values in Xtst must be indicated as NaN.

Output:

results : A structure of different error measures calculated on the test data set. The

structure has the following fields (if the model is an ensemble, the fields are

column vectors with one (cumulative) value for each ensemble size, the

very last value being error for a full ensemble):

MAE : Mean Absolute Error.

MSE : Mean Squared Error.

RMSE : Root Mean Squared Error.

RRMSE : Relative Root Mean Squared Error.

R2 : Coefficient of Determination.

2.8. Function m5pcv

Purpose:
Tests M5' performance using k-fold Cross-Validation.

Call:
[results, residuals] = m5pcv(X, Y, trainParams, isBinCat, k, shuffle, nCross,

trainParamsEnsemble, verbose)

All the input arguments, except the first two, are optional. Empty values are also accepted (the

corresponding defaults will be used).

Note that, if parameter shuffle is set to true, this function employs random number generator

for which you can set seed before calling the function.

Input:

X, Y : The data. Missing values in X must be indicated as NaN. (see function

m5pbuild for details)

trainParams : A structure of training parameters. If not provided, defaults will be used

(see function m5pparams for details).

isBinCat : See description of function m5pbuild.

k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)

shuffle : Whether to shuffle the order of observations before performing Cross-

Validation. (default value = true)

 13

nCross : How many times to repeat Cross-Validation with different data

partitioning. This can be used to get more stable results. Default value = 1,

i.e., no repetition. Useless if shuffle = false.

trainParamsEnsemble : A structure of parameters for building ensembles of trees. If not

provided, a single tree is built. See function m5pparamsensemble for

details.

verbose : Whether to output additional information to console. (default

value = true)

Output:

resultsTotal : A structure of results averaged over Cross-Validation folds. For tree

ensembles, the structure contains fields that are column vectors with one

value for each ensemble size, the very last value being value for a full

ensemble.

resultsFolds : A structure of row vectors of results for each Cross-Validation fold. For

tree ensembles, the structure contains matrices whose rows correspond to

Cross-Validation folds while columns correspond to each ensemble size,

the very last value being a value for a full ensemble.

Both structures have the following fields:

MAE : Mean Absolute Error.

MSE : Mean Squared Error.

RMSE : Root Mean Squared Error.

RRMSE : Relative Root Mean Squared Error. Not reported for Leave-One-Out

Cross-Validation.

R2 : Coefficient of Determination. Not reported for Leave-One-Out Cross-

Validation.

nRules : Number of rules in tree. For ensembles of trees, this field is omitted.

nVars : Number of input variables included in tree. This counts original variables

(not synthetic ones that are automatically made). For ensembles of trees,

this field is omitted.

2.9. Function m5pprint

Purpose:

Prints M5' tree or decision rule set in a human-readable form. Does not work for whole

ensembles but the function can be run for each tree separately.

Call:
m5pprint(model, showNumCases, precision, dealWithNaN)

All the input arguments, except the first one, are optional. Empty values are also accepted (the

corresponding defaults will be used).

Input:

model : M5' model or decision rule set.

showNumCases : Whether to show the number of training observations corresponding to

each leaf (default value = true).

precision : Number of digits used for any numerical values shown (default value = 5).

dealWithNaN : Whether to display how the tree deals with missing values (NaN, displayed

as '?') (default value = false).

 14

Remarks:

1. For smoothed M5' trees / decision rule sets, the smoothing process is already done in

m5pbuild, therefore if you want to see unsmoothed versions (which are usually easier to

interpret) you should build trees with smoothing disabled.

2. If the training data has categorical variables with more than two categories, the

corresponding synthetic binary variables are shown.

2.10. Function m5pplot

Purpose:
Plots M5' tree. Does not work with ensembles or decision rule sets. For ensembles of trees, this

function can be run for each tree separately.

Call:
m5pplot(model, varargin)

In the plotted tree, left child of a node corresponds to outcome 'true' and right child to outcome

'false'.

All the input arguments, except the first one, are optional.

Input:

model : M5' model.

varargin : Name/value pairs of parameters:

showNumCases : Whether to show the number of training observations corresponding to

each node. Set to 'all' to show it for all nodes. Set to 'leaves' to show it

for leaves only. Set to 'off' or any other value to turn it off (default value

= 'all').

showSD : Whether to show standard deviation values corresponding to each node

(default value = false). These values can also be interpreted as Root Mean

Squared Error of each node in its corresponding partition of the training

dataset. Note that the information is available only if the tree was built

using keepNodeInfo = true.

precision : Number of digits used for any numerical values shown (default value = 5).

dealWithNaN : Whether to display how the tree deals with missing values (NaN, displayed

as '?') (default value = false).

layout : Graph layout algorithm and tree style. Set to 'oblique' for semi-

optimized layout of a tree with edges that form oblique angles. Set to

'right' for unoptimized layout of a tree with edges that form right angles.

Set to 'old' for the old version of the graph layout algorithm (default value

= 'oblique').

widthMult : Edge width multiplier (default value = 1).

variableWidth : Whether edge width should reflect the number of training observations

(default value = false).

colorize : Whether to colorize nodes and edges according to the response values

(default value = false). Not available for model trees or if layout =

'old'. Complete colorization is available only if the regression tree was

built using keepNodeInfo = true.

fontSize : Font size for text (default value = 10).

 15

Remarks:

1. For smoothed M5' trees, the smoothing process is already done in m5pbuild, therefore if

one wants to see unsmoothed versions (which are usually easier to interpret), the trees

should be built with smoothing disabled.

2. If the training data has categorical variables with more than two categories, the

corresponding synthetic binary variables are shown.

3. For unsmoothed regression trees, if they were built using keepNodeInfo = true, the plot

will show predicted values at interior nodes as well.

 16

3. EXAMPLES OF USAGE

3.1. Growing regression trees, model trees, and decision rules

We start by creating a dataset using a three-dimensional function with one continuous variable,

one binary variable, and one categorical variable with four categories. The data consists of

randomly uniformly distributed 100 observations.

X = [rand(100,1) rand(100,1)<0.5 floor(rand(100,1)*4)];

Y = X(:,1).*(X(:,3)==0) + X(:,2).*(X(:,3)==1) - ...

 2*X(:,1).*(X(:,3)==2) + 3*(X(:,3)==3) + 0.02*randn(100,1);

First let's try to grow a model tree. All the parameters will be left to their defaults. We won't use

smoothing because our data has sharp discontinuities and we don't want to loose them.

We will supply isBinCat vector indicating that the first input variable is continuous, the second

is binary, and the third is categorical with four categories (detected automatically). M5' tree is

grown by calling m5pbuild.

params = m5pparams2('modelTree', true);

model = m5pbuild(X, Y, params, [false true true]);

As the tree growing process ends, we can examine the structure of the grown tree using function

m5pprint. First we see synthetic variables (automatically made if the data contains at least one

categorical variable with more than two categories) and then the tree itself. Each leaf of a model

tree contains either a constant or a linear regression model. Number of training data observations for

each leaf is shown in parentheses.

m5pprint(model);

Synthetic variables:

z1 = x1

z2 = x2

z3 = 1, if x3 is in {0, 1, 3} else = 0

z4 = 1, if x3 is in {1, 3} else = 0

z5 = 1, if x3 is in {3} else = 0

The tree:

if z5 == 0

 if z3 == 0

 y = -0.0039976 -2.0036*z1 (28)

 else

 if z2 == 0

 if z4 == 0

 y = -0.0055303 +1.0162*z1 (9)

 else

 y = -0.0012792 (15)

 else

 if z4 == 0

 y = -0.0083598 +1.0228*z1 (10)

 else

 y = 1.0004 (14)

else

 y = 2.9962 (24)

Number of rules: 6

Number of original input variables used: 3 (x1, x2, x3)

If the tree is too large or overfits, consider increasing minLeafSize and/or minParentSize or

setting aggressivePruning to true. You can use function m5pcv to test different configurations.

Now let’s plot the tree using the function m5pplot. Left child of a node corresponds to outcome

'true' and right child to 'false'.

 17

m5pplot(model);

We can evaluate performance of this M5' configuration on the data using Cross-Validation (10

folds by default). This is done using function m5pcv. Note that for more stable results one should

consider repeating Cross-Validation several times (see description of the argument nCross of

function m5pcv).

rng(1);

results = m5pcv(X, Y, params, [false true true])

results =

 MAE: 0.0175

 MSE: 5.7272e-04

 RMSE: 0.0226

 RRMSE: 0.0178

 R2: 0.9996

 nRules: 6.1000

 nVars: 3

Now, let’s try doing the same but instead of model tree we will grow a regression tree. In a

regression tree, each leaf predicts the output using just a simple constant.

params = m5pparams2('modelTree', false);

model = m5pbuild(X, Y, params, [false true true]);

m5pprint(model);

Synthetic variables:

z1 = x1

z2 = x2

z3 = 1, if x3 is in {0, 1, 3} else = 0

z4 = 1, if x3 is in {1, 3} else = 0

z5 = 1, if x3 is in {3} else = 0

The tree:

if z5 == 0

 if z3 == 0

 if z1 <= 0.54819

 if z1 <= 0.24359

 if z1 <= 0.16427

 y = -0.14619 (2)

 else

 y = -0.41656 (2)

 else

 if z1 <= 0.3558

 y = -0.6216 (5)

 else

 y = -0.83133 (4)

 else

 if z1 <= 0.77846

 18

 if z1 <= 0.68792

 y = -1.2857 (5)

 else

 y = -1.4471 (3)

 else

 if z1 <= 0.89632

 y = -1.685 (4)

 else

 y = -1.9157 (3)

 else

 if z2 == 0

 if z4 == 0

 if z1 <= 0.74506

 y = 0.44942 (6)

 else

 y = 0.91532 (3)

 else

 y = -0.0012792 (15)

 else

 if z4 == 0

 if z1 <= 0.47721

 if z1 <= 0.097205

 y = 0.031616 (2)

 else

 y = 0.18881 (6)

 else

 y = 0.79682 (2)

 else

 y = 1.0004 (14)

else

 y = 2.9962 (24)

Number of rules: 16

Number of original input variables used: 3 (x1, x2, x3)

rng(1);

results = m5pcv(X, Y, params, [false true true])

results =

 MAE: 0.0754

 MSE: 0.0178

 RMSE: 0.1233

 RRMSE: 0.1029

 R2: 0.9842

 nRules: 14.9000

 nVars: 3

Let's plot the tree. But this time we'll also try a different visualization style.

m5pplot(model, 'precision', 3, 'layout', 'right');

 19

To use the tree for predictions, just call m5ppredict. Moreover, for regression trees, we can

also compute how much each input variable contributed to the predicted response, i.e., by how

much each variable “pulled” the response away from its mean.

[Yq, contrib] = m5ppredict(model, [0.5 0 2]);

fprintf('Prediction: %f\n', Yq(1));

fprintf('Training set mean: %f\n', contrib(1,end));

fprintf('Input variable contributions:\n');

[~, idx] = sort(abs(contrib(1,1:end-1)), 'descend');

for i = idx

 fprintf('x%d: %f\n', i, contrib(1,i));

end

Prediction: -0.831327

Training set mean: 0.633115

Input variable contributions:

x3: -1.733675

x1: 0.269233

x2: 0.000000

Or in other words: prediction = -0.831327 = 0.633115 (training set response mean) - 1.733675

(loss from x3) + 0.269233 (gain from x1). This can be viewed as a breakdown of the prediction in

terms of response value changes along the prediction path, together with input variable names that

“caused” these changes due to being the split variables in the path. For simple explanation of the

“feature contribution method”, see Saabas 2014/2015.

Next, let's try generating decision rules from M5' model trees using the M5'Rules method. This

is an iterative method. In each iteration it grows a tree, selects the rule that covers the most data

observations, discards the tree, and removes all observations from the data that were covered by the

selected rule. The method is slower than the direct rule extraction method but it usually produces

fewer rules.

params = m5pparams2('modelTree', true, 'extractRules', 2);

model = m5pbuild(X, Y, params, [false true true]);

m5pprint(model);

Synthetic variables:

z1 = x1

z2 = x2

z3 = 1, if x3 is in {0, 1, 3} else = 0

z4 = 1, if x3 is in {1, 3} else = 0

z5 = 1, if x3 is in {3} else = 0

The decision rules:

if z5 == 0 and z3 == 0 then y = -0.0039976 -2.0036*z1 (28)

if z5 == 1 then y = 2.9962 (24)

if z2 == 0 and z4 == 1 then y = -0.0012792 (15)

if z4 == 0 then y = -0.0074507 +1.0195*z1 (19)

y = 1.0004 (14)

Number of rules: 5

Number of original input variables used: 3 (x1, x2, x3)

These decision rules actually perfectly capture the function that generated our dataset.

Let's evaluate performance of this M5'Rules configuration on the data using 10-fold Cross-

Validation.

rng(1);

results = m5pcv(X, Y, params, [false true true])

 20

results =

 MAE: 0.0161

 MSE: 3.9249e-04

 RMSE: 0.0196

 RRMSE: 0.0156

 R2: 0.9997

 nRules: 5

 nVars: 3

We can see that for our dataset on average this method produces fewer rules than there were in

model trees above while the predictive performance is similar.

3.2. Growing ensembles of trees

For this example we will use Housing dataset available at the UCI repository

(http://archive.ics.uci.edu/ml/). The data has 506 observations and 13 input variables. One input

variable is binary, all others are continuous.

We will grow a Random Forest for this data.

First, we must create a configuration for growing individual trees in the ensemble. We will

create a configuration for ensembles of regression trees: the minimum number of observations a

node must have to be considered for splitting will be 5, the minimum number of training

observations a leaf node may represent will be 1, the trees will not be pruned, no smoothing will be

applied, and we will set splitThreshold equal to 1E-6.

params = m5pparams(false, 1, 5, false, 0, 1E-6);

Next, we must create a configuration for growing the ensemble. This is done using function

m5pparamsensemble. The default parameters in this function are already prepared to grow Random

Forests but let's try to find a better value for numVarsTry (this is the number of input variables

randomly sampled as candidates at each split while growing a tree). By default the value is -1 which

means that m5pbuild will automatically set it to one third of the number of input variables (typical

for Random Forests in regression problems). For our data, the value is floor(13 / 3) = 4. But let's try

also a value twice as high and half as low (as suggested by Breiman, 2002) as well as all variables

(which is the value for Bagging), i.e., 2, 4, 8, and 13. Of course, alternatively, we could instead try

different values for minLeafSize (together with minParentSize), maxDepth, or compare some

other configurations.

For faster processing, we will grow only 50 trees. Later, when the “best” value is found, we will

grow a bigger ensemble.

We will also enable getOOBError because we need out-of-bag error estimates and disable

getVarImportance and getOOBContrib because we don't yet need those.

An ensemble is grown by calling m5pbuild. We will supply isBinCat vector indicating that

one variable is binary and the rest are continuous. By supplying the fifth argument to m5pbuild

(paramsEnsemble), we are indicating that an ensemble should be created instead of just one tree.

paramsEnsemble = m5pparamsensemble(50, [], [], [], [], true, 0, false);

isBinCat = [false(1,3) true false(1,9)];

numVarsTry = [2 4 8 13];

figure; hold on;

for i = 1:4

 paramsEnsemble.numVarsTry = numVarsTry(i);

 [~, ~, ensembleResults] = m5pbuild(X, Y, params, isBinCat, paramsEnsemble);

 plot(ensembleResults.OOBError(:,1));

end

grid on;

xlabel('Number of trees');

ylabel('Out-of-bag MSE');

legend({'2' '4' '8' '13'}, 'Location', 'NorthEast');

http://archive.ics.uci.edu/ml/

 21

We can see that curves for values 4, 8, and 13 are very similar and are better than curve for 2.

So let's say we choose numVarsTry to be the default, 4. Now let's build a larger ensemble consisting

of say 200 trees and, while we're at it, use it to estimate input variable importance (leave

getVarImportance to its default, 1) and compute input variable contributions (leave

getOOBContrib to its default, true).

paramsEnsemble = m5pparamsensemble(200);

[model, time, ensembleResults] = m5pbuild(X, Y, params, isBinCat, paramsEnsemble);

Now we can inspect the out-of-bag error curve again.

figure;

plot(ensembleResults.OOBError(:,1));

grid on;

xlabel('Number of trees');

ylabel('Out-of-bag MSE');

We can see that the prediction error estimate becomes quite stable. The values in last row of

ensembleResults.OOBError show us that the ensemble of 200 trees estimates its prediction error

to be MSE = 9.8.

 22

Now let's plot variable importances. For that we will use the third and the forth row of

ensembleResults.varImportance. The third row is the average increase of out-of-bag MSE when

out-of-bag data of a variable is permuted. The fourth row is standard deviation of the average

increase of the MSE. The importance estimate is often calculated by dividing the increase by its

standard deviation. Bigger values then indicate bigger importance of the corresponding variable (we

could also express these values as percent of the maximum importance).

figure;

bar(ensembleResults.varImportance(3,:) ./ ensembleResults.varImportance(4,:));

xlabel('Variable number');

ylabel('Variable importance');

We can see that the 6th and 13th variables are estimated to be the most important ones while the

2nd and 4th are estimated to be the least important ones.

Now, let's take a look at input variable contributions to predicted responses, i.e., by how much

each variable “pulled” responses away from their means. This can be done by making Forest Floor

main effect plots (Welling et al., 2016).

figure;

contrib = ensembleResults.OOBContrib;

cminmax = [min(min(contrib(:,1:(end-1))))-0.5 max(max(contrib(:,1:(end-1))))+0.5];

for i = 1 : size(X,2)

 subplot(3,5,i);

 scatter(X(:,i), contrib(:,i), 50, '.');

 ylim(cminmax); xlim([min(X(:,i)) max(X(:,i))]);

 xlabel(['x_{' num2str(i) '}']); box on;

end

Now we can see not only that the 6th and 13th variables are very important but also how their

contributions change depending on their values.

Note that similarly one can also make Forest Floor interaction plots (Welling et al., 2016).

 23

While ensembleResults.OOBContrib allows finding out input variable contributions only for

out-of-bag data from the training, computing contributions for any data can be done using function

m5ppredict.

[Yq, contrib] = m5ppredict(model, [0.1 45 3 0 0.5 6.7 30 7 5 400 15 390 5]);

fprintf('Prediction: %f\n', Yq(1));

fprintf('In-bag mean: %f\n', contrib(1,end));

fprintf('Input variable contributions:\n');

[~, idx] = sort(abs(contrib(1,1:end-1)), 'descend');

for i = idx

 fprintf('x%d: %f\n', i, contrib(1,i));

end

Prediction: 29.800000

In-bag mean: 22.547387

Input variable contributions:

x13: 3.970270

x3: 1.942738

x11: 1.666809

x6: -1.169694

x8: -0.657689

x5: 0.604105

x10: -0.459337

x7: 0.172198

x1: 0.157650

x2: 0.140998

x9: 0.044719

x12: -0.021819

x4: -0.016336

We can see that, even though in general the 6th variable is among the two most important ones,

in this particular case, the 13th, 3rd, and 11th variables contributed to the response more than the

6th. We can also see that they all contributed to the increase of response value, while the 6th

variable contributed to the decrease.

 24

Finally, if needed, we can also evaluate the predictive performance of the ensemble using Cross-

Validation or a separate test data set. This is done using m5pcv and m5ptest. The output arguments

of both these functions contain matrices with errors calculated at each ensemble size (as well as, in

case of m5pcv, at each fold).

rng(1);

resultsCV = m5pcv(X, Y, params, isBinCat, 10, [], [], paramsEnsemble);

figure;

plot(ensembleResults.OOBError(:,1));

hold on;

plot(resultsCV.MSE);

grid on;

xlabel('Number of trees');

ylabel('MSE');

legend({'Out-of-bag' 'Cross-Validation'}, 'Location', 'NorthEast');

We can see that in our case Cross-Validation gives us error estimate that is very similar to the

previously calculated out-of-bag estimate.

 25

4. REFERENCES

1. Breiman L. Bagging predictors. Machine Learning 24 (2), 1996, pp. 123-140.

2. Breiman L. Random forests. Machine Learning, 45 (1), 2001, pp. 5-32.

3. Breiman L. Manual on setting up, using, and understanding random forests v4.0. Statistics

Department University of California Berkeley, CA, USA, 2002

4. Geurts P., Ernst D., Wehenkel L. Extremely randomized trees. Machine Learning 63 (1), 2006,

pp. 3-42.

5. Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I. H. The WEKA data

mining software: an update, SIGKDD Explorations, 11 (1), 2009

6. Holmes G., Hall M., Frank E. Generating rule sets from model trees. 12th Australian Joint

Conference on Artificial Intelligence, 1999, pp. 1-12.

7. Kuz’min V. E., Polishchuk P. G., Artemenko A. G., Andronati S. A. Interpretation of qsar

models based on random forest methods. Molecular Informatics, 30 (6-7), 2011, pp. 593-603.

8. Palczewska A., Palczewski J., Robinson R. M., Neagu D. Interpreting random forest models

using a feature contribution method. Information Reuse and Integration (IRI), 2013 IEEE 14th

International Conference on Information Reuse and Integration, San Francisco, CA, USA,

IEEE, 2013, pp. 112-119.

9. Quinlan J. R. Learning with continuous classes. Proceedings of 5th Australian Joint Conference

on Artificial Intelligence, World Scientific, Singapore, 1992, pp. 343-348.

10. Saabas A., Interpreting random forests, 2014/2015, http://blog.datadive.net/interpreting-random-

forests/ and http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/ (accessed

August 5, 2016)

11. Wang Y. & Witten I. H. Induction of model trees for predicting continuous classes. Proceedings

of the 9th European Conference on Machine Learning Poster Papers, Prague, 1997, pp. 128-137.

12. Welling S. H., Refsgaard H. H. F., Brockhoff P. B., Clemmensen L. H. Forest Floor

Visualizations of Random Forests. ArXiv e-prints, July 2016

http://blog.datadive.net/interpreting-random-forests/
http://blog.datadive.net/interpreting-random-forests/
http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/

