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1. INTRODUCTION

What is LWP

LWP is a Matlab/Octave toolbox implementing Locally Weighted Polynomial regression (also
known as Local Regression / Locally Weighted Scatterplot Smoothing / LOESS / LOWESS and
Kernel Smoothing). With this toolbox you can fit local polynomials of any degree using one of the
nine  kernels  with  metric  window  widths  or  nearest  neighbor  window  widths  to  data  of  any
dimensionality.  A  function  for  optimization  of  the  kernel  bandwidth  is  also  available.  The
optimization can be performed using Leave-One-Out Cross-Validation, GCV, AICC, AIC, FPE, T,
S, or separate validation data. Robust fitting is available as well.

Some of the original papers on locally weighted regression methods include (Cleveland et al.,
1992; Cleveland & Devlin, 1988; Cleveland, 1979; Stone, 1977; Nadaraya, 1964; Watson, 1964).

This user's manual provides overview of the functions available in the LWP toolbox.
LWP toolbox can be downloaded at http://www.cs.rtu.lv/jekabsons/.
The toolbox code is licensed under the GNU GPL ver. 3 or any later version.

Feedback

For any feedback on the toolbox including bug reports feel free to contact me via the email
address given on the title page of this user's manual.

Citing the LWP toolbox

Jekabsons  G.,  Locally  Weighted  Polynomials  toolbox  for  Matlab/Octave,  2016,  available  at
http://www.cs.rtu.lv/jekabsons/
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2. AVAILABLE FUNCTIONS

LWP toolbox provides the following list of functions:
 lwppredict – predicts response values for the given query points using Locally Weighted

Polynomial regression;
 lwpparams – creates configuration for LWP (the output structure is for further use with all

the other functions of the toolbox);
 lwpeval – evaluates predictive performance of LWP using one of the criteria;
 lwpfindh – finds the “best” bandwidth for a kernel.

2.1. Function lwppredict

Purpose:
Predicts  response  values  for  the  given  query  points  using  Locally  Weighted  Polynomial

regression. Can also provide the smoothing matrix L.

Call:
[Yq, L] = lwppredict(Xtr, Ytr, params, Xq, weights, failSilently)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data.  Xtr is a matrix with rows corresponding to observations

and columns corresponding to input variables.  Ytr is a column vector of
response  values.  To  automatically  standardize  Xtr to  unit  standard
deviation  before  performing  any  further  calculations,  set
params.standardize to true.
If Xq is not given or is empty, Xtr also serves as query points.
If  the  dataset  contains  observations  with  coincident  Xtr values,  it  is
recommended to merge the observations before using the LWP toolbox.
One can simply reduce the dataset by averaging the Ytr at the tied values
of Xtr and supplement these new observations at the unique values of Xtr
with an additional weight.

params : A structure of parameters for LWP. See function lwpparams for details.
Xq :  A  matrix  of  query  data  points.  Xq should  have  the  same  number  of

columns as Xtr. If Xq is not given or is empty, query points are Xtr.
weights : Observation weights for training data (which multiply the kernel weights).

The length of the vector must be the same as the number of observations in
Xtr and Ytr. The weights must be nonnegative.

failSilently : In case of any errors, whether to fail with an error message or just output
NaN. This is useful for functions that perform parameter optimization and
could try to wander out of ranges (e.g.,  lwpfindh) as well as for drawing
plots even if some of the response values evaluate to NaN. Default value =
false. See also argument safe of function lwpparams.

Output:
Yq : A column vector of predicted response values at the query points (or NaN

where calculations failed).
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L : Smoothing matrix. Available only if Xq is empty.

Remarks:
Locally Weighted Polynomial regression is designed to address situations in which models of

global behaviour do not perform well or cannot be effectively applied without undue effort. LWP is
a  nonparametric  regression  method  that  is  carried  out  by  pointwise  fitting  of  low-degree
polynomials to localized subsets of the data. The advantage of this method is that the analyst is not
required to specify a global function. However, the method requires fairly large, densely sampled
datasets in order to produce good models and it is relatively computationally intensive.

The assumption of the LWP regression is that near the query point the value of the response
variable  changes  smoothly  and  can  be  approximated  using  a  low-degree  polynomial.  The
coefficients of the polynomial are calculated using weighted least squares method giving the largest
weights  to  the  nearest  data  observations  and  the  smallest  or  zero  weights  to  the  farthest  data
observations.

For further details on kernels, see remarks for function lwpparams.

2.2. Function lwpparams

Purpose:
Creates  configuration  for  LWP.  The  output  structure  is  for  further  use  with  all  the  other

functions of the toolbox.

Call:
params  =  lwpparams(kernel,  degree,  useKNN,  h,  robust,  knnSumWeights,

standardize, safe)

All  the  input  arguments  of  this  function  are  optional.  Empty  values  are  also  accepted  (the
corresponding defaults will be used).

Input:
kernel : Kernel type (string). See user's manual for details. Default value = 'TRC'.

'UNI': Uniform (rectangular)
'TRI': Triangular
'EPA': Epanechnikov (quadratic)
'BIW': Biweight (quartic)
'TRW': Triweight
'TRC': Tricube
'COS': Cosine
'GAU': Gaussian
'GAR': Gaussian modified (Rikards et al., 2006).

degree :  Polynomial  degree.  Default  value = 2. If  degree is  not an integer,  let
degree = d1 + d2 where  d1 is  an  integer  and  0 < d2 < 1;  then  a  “mixed
degree fit” is performed where the fit is a weighted average of the local
polynomial fits of degrees  d1 and  d1 + 1 with weight 1 – d2 for the former
and weight d2 for the latter (Cleveland & Loader, 1996).

useKNN : Whether the bandwidth for kernel is defined in nearest neighbors (true)
or as a metric window (false). Default value = true.

h : Window size of the kernel defining its bandwidth. If  useKNN =  true,  h
defines the number of nearest neighbors: for h <= 1, the number of nearest
neighbors is the fraction  h of the whole dataset; for  h > 1, the number of
nearest neighbors is integer part of h. If useKNN = false, h defines metric
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window size. More specifically, let  maxDist be the distance between two
opposite  corners  of  the  hypercube  defined  by  Xtr,  then:  for  the  first  7
kernel types, h*maxDist is kernel radius; for kernel type 'GAU', h*maxDist
is standard deviation; for kernel type 'GAR', h is coefficient alpha (smaller
alpha means larger bandwidth; see remarks for details). In any case, h can
also be called smoothing parameter. Default value = 0.5, i.e., 50% of all
data if  useKNN =  true or 50% of  maxDist if  useKNN =  false and kernel
type is not 'GAR'.
Note that if useKNN = true, the farthest of the nearest neighbors will get 0
weight.

robust : Whether to use robust local regression and how many iterations to use for
the robust weighting calculations. Typical values range from 2 to 5. Default
value  =  0  (robust  version  is  turned  off).  The  algorithm  for  the  robust
version is from Cleveland (1979).

knnSumWeights : This argument is used only if useKNN = true and fitting uses observation
weights or robustness weights (when  robust > 0). Set to  true to define
neighborhoods using a total weight content params.h (relative to sum of all
weights) (Hastie et al., 2009). Set to false to define neighborhoods just by
counting observations irrespective of their weights, except if a weight is 0.
Default value = true.

standardize :  Whether  to  standardize  all  input  variables  to  unit  standard  deviation.
Default value = true.

safe :  Whether  to  allow prediction  only  if  the  number  of  the  available  data
observations for the polynomial at a query point is larger than or equal to
the number of its coefficients. Default value = true, i.e., the function will
fail with error message or output NaN (what is the exact action to be taken,
is determined by argument failSilently of the called function). If safe is
set to false, coefficients will be calculated even if there is rank deficiency.
To  avoid  these  situations  altogether,  make  the  bandwidth  of  the  kernel
sufficiently wide. Note that setting safe = false is not available in Octave.

Output:
params : A structure of parameters for further use with all the other functions of the

toolbox containing the provided values (or defaults, if not provided).

Remarks:
Let b(X) be a vector of polynomial terms in X. At each query point  solve

to produce the fit  where K is a weighting function or kernel

where ||.|| is the Euclidean norm and hλ(x0) is a width function (indexed by λ) that determines the
width of the neighborhood at  x0. For metric window widths,  hλ(x0) =  λ is constant. For  k-nearest
neighborhoods, the neighborhood size k replaces λ, and we have hk(x0) = ||x0 – x[k]|| where x[k] is the
farthest of the k nearest neighbors xi to x0.

The LWP toolbox implements the following kernel functions:
1. Uniform (rectangular)
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2. Triangular

3. Epanechnikov (quadratic)

4. Biweight (quartic)

5. Triweight

6. Tricube

7. Cosine

8. Gaussian

9. Gaussian kernel modified according to (Rikards et al., 2006).

where α is coefficient controlling the locality of the fit (when α is zero, the result of the procedure is
equivalent to global regression) and

.
where x[n] is the farthest of the n data observations to x0.

Some additional  details  on the  choice  of  bandwidth (Hastie  et  al.,  2009):  Large  bandwidth
implies lower variance (averages over more observations) but higher bias. Metric window widths
tend to keep the bias of the estimate constant, but the variance is inversely proportional to the local
density.  Nearest  neighbors  exhibit  the  opposite  behaviour;  the  variance  stays  constant  and  the
absolute bias varies inversely with local density. On boundaries, the metric neighborhoods tend to
contain less observations, while the nearest-neighborhoods get wider.

Note that the behaviour of the modified Gaussian kernel is inverted – for larger α the fitting is
more local.

2.3. Function lwpeval

Purpose:
Evaluates predictive performance of LWP using one of the criteria.

Call:
[evaluation, df1, df2] = lwpeval(Xtr, Ytr, params, crit, Xv, Yv, weights,

failSilently, checkArguments)
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All the input arguments, except the first four, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data. See description of function lwppredict for details.
params :  A  structure  of  parameters  for  LWP.  See  description  of  function

lwpparams for details.
crit : Criterion (string):

'VD': Use validation data (Xv, Yv)
'CVE': Explicit Leave-One-Out Cross-Validation
'CV': Closed-form expression for Leave-One-Out Cross-Validation
'GCV': Generalized Cross-Validation (Craven & Wahba, 1979)
'AICC1': improved version of AIC (Hurvich et al., 1998)
'AICC': approximation of AICC1 (Hurvich et al., 1998)
'AIC': Akaike Information Criterion (Akaike, 1973, 1974)
'FPE': Final Prediction Error (Akaike, 1970)
'T': (Rice, 1984)
'S': (Shibata, 1981)
The study by Hurvich et al. (1998) compared GCV, AICC1, AICC, AIC, and
T for nonparametric regression. Overall, AICC gave the best results. It was
concluded that AICC1, AICC, and T tend to slightly oversmooth, GCV has a
tendency to undersmooth, while AIC has a strong tendency to choose the
smallest bandwidth available.
Note  that  if  robust  fitting  or  observation  weights  are  used,  the  only
available criteria are 'VD' and 'CVE'.

Xv, Yv : Validation data for criterion 'VD'.
weights :  Observation  weights for  training  data.  See  description  of  function

lwppredict for details.
failSilently : See description of function lwppredict. Default value = false.
checkArguments :  Whether  to  check  if  all  the  input  arguments  are  provided  correctly.

Default  value  =  true.  It  can  be  useful  to  turn  it  off  when calling  this
function many times for optimization purposes.

Output:
val : The calculated criterion value.
df1, df2 : Degrees of freedom of the LWP fit: df1 = trace(L), df2 = trace(L'*L).

Not available if crit is 'VD' or 'CVE'.

Remarks:
The criteria in the LWP toolbox is calculated as follows.
Explicit Leave-One-Out Cross-Validation (Mean Squared Error):

CVE=
1
n
∑
i=1

n

( yi− ^f (−i)(x i))
2

where y i  is the response value for the ith training data observation, ^f (−i)(x i)  is the estimate of f
obtained by omitting the pair {x i , yi} , and n is the number of observations in the training data.

Closed-form expression for Leave-One-Out Cross-Validation:

CV=
1
n
∑
i=1

n

(
yi− ŷ i
1−lii

)
2
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where ŷ i  is the estimated value of y i  and lii is the ith diagonal element of smoothing matrix L.
Generalized Cross-Validation (Craven & Wahba, 1979):

GCV=
nRSS

(n−tr (L))
2

where RSS is the residual sum of squares and tr (L)  is the trace of L.
Akaike Information Criterion (Akaike, 1973, 1974):

AIC=log(RSS /n)+2 tr(L)/n

AICC1, improved version of AIC (Hurvich et al., 1998):

AICC1=log(RSS /n)+
(δ 1/δ 2)(n+ tr(L ' L))

δ 1
2
/δ 2−2

where δ 1=tr(B) , δ 2=tr (B
2
) , B=(I−H) ' (I−H) , and I  is the identity matrix.

AICC, approximation of AICC1 (Hurvich et al., 1998):

AICC=log (RSS/n)+1+
2( tr(L)+1)
n− tr(L)−2

Final Prediction Error (Akaike, 1970):

FPE=
RSS (1+ tr(L)/n)
n(1−tr (L)/n)

T (Rice, 1984):

T=
RSS
n−2 tr(L)

S (Shibata, 1981):

S=(1/n)RSS (1+2 tr (L)/n)

2.4. Function lwpfindh

Purpose:
Finds the “best” bandwidth for a kernel using a simple grid search followed by fine-tuning.

Predictive performances are estimated using one of the criteria provided by function lwpeval.

Call:
[hBest, critBest, results] = lwpfindh(Xtr, Ytr, params, crit, hList, Xv, Yv,

weights, finetune, verbose)

All the input arguments, except the first four, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data. See description of function lwppredict for details.
params : A  structure  of  parameters  for  LWP.  See  description  of  function

lwpparams. Parameter  params.h is ignored, as it is the one parameter to
optimize.
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crit : See description of function lwpeval.
hList : A vector of non-negative window size h values to try (see description of

function lwpparams for details about h). If hList is not supplied, a grid of
values  is  created  automatically  depending  on  params.kernel.  For  all
kernel types, except 'GAR', equidistant values between 0.05 and 1 with step
size  0.05  are  considered.  For  kernel  type  'GAR',  the  values  grow
exponentially  from 0  to  100*2^10.  The  result  from this  search  step  is
(optionally) fine-tuned (see argument finetune).

Xv, Yv : Validation data for criterion 'VD'.
weights :  Observation  weights  for  training  data.  See  description  of  function

lwppredict for details.
finetune :  Whether to fine-tune the result from the grid search. Nearest  neighbor

window widths are fine-tuned using more fine-grained grid. Metric window
widths  are  fine-tuned using  Nelder-Mead simplex  direct  search.  Default
value = true.

verbose : Whether to print the optimization progress to the console. Default value =
true.

Output:
hBest : The best found value for h.
critBest : Criterion value for hBest.
results :  A  matrix  with  four  columns.  First  column  contains  all  the  h values

considered  in  the  initial  grid  search.  Second  column  contains  the
corresponding criterion values. Third and fourth columns contain df1 and
df2 values from function lwpeval. See function lwpeval for details.
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3. EXAMPLE OF USAGE

We start by creating a dataset using a two-dimensional function with added noise. The training
data consists of 121 observations distributed in a regular 11×11 grid.

fun = @(X) (30+(5*X(:,1)+5).*sin(5*X(:,1)+5)) .* (4+exp(-(2.5*X(:,2)+2.5).^2));
[gridX1, gridX2] = meshgrid(-1:0.2:1, -1:0.2:1);
X = [reshape(gridX1, numel(gridX1), 1) reshape(gridX2, numel(gridX2), 1)];
rng(1);
Y = fun(X) + 5 * randn(size(X,1), 1);

We will fit 2nd degree local polynomial using the Gaussian kernel with metric window size. To
find a good value for the bandwidth, we will use function  lwpfindh with Leave-One-Out Cross-
Validation as a criterion.

First we create a structure of parameters using function  lwpparams and then we call function
lwpfindh with these parameters. Note that even though lwpparams creates a structure that includes
also a value for h, lwpfindh ignores it, as it is the one parameter to optimize. lwpfindh performs a
simple Grid Search followed by fine-tuning. Alternatively,  we could also supply our own list of
candidate values using the input argument hList but let's try the automatic mode.

params = lwpparams('GAU', 2, false);
[hBest, critBest, results] = lwpfindh(X, Y, params, 'CV');

The function prints its progress (you can turn it off by setting the verbose argument to false)
and  finally  in  its  output  we  get  the  best  found  h (hBest),  its  corresponding  criterion  value
(critBest), as well as results from each iteration of the Grid Search (results).

Let's update our parameters with the hBest value and create a surface plot. For this we will need
to predict response values for a range of different inputs. This is done using function lwppredict.

params = lwpparams('GAU', 2, false, hBest);

[gridX1, gridX2] = meshgrid(-1:2/50:1, -1:2/50:1);
Xq = [reshape(gridX1, numel(gridX1), 1) reshape(gridX2, numel(gridX2), 1)];
Yq = lwppredict(X, Y, params, Xq);
Yq = reshape(Yq, size(gridX1));
figure;
surf(gridX1, gridX2, Yq);
axis([-1 1 -1 1 80 200]);
hold on;
plot3(X(:,1), X(:,2), Y, 'r.', 'Markersize', 20);
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For visual comparison, let's plot the true function.

Ytrue = fun(Xq);
figure;
surf(gridX1, gridX2, reshape(Ytrue, size(gridX1)));
axis([-1 1 -1 1 80 200]);

We can also test our LWP configuration on test data, if we have any. For simplicity's sake, let's
just pretend that the grid Xq we created for plotting the true function is actually also our test dataset
(consisting of 2601 observations). We again use lwppredict.

MSE = mean((lwppredict(X, Y, params, Xq) - Ytrue) .^ 2)

MSE =
    5.8120

Or alternatively, we can also use lwpeval with 'VD' as the criterion:

MSE = lwpeval(X, Y, params, 'VD', Xq, Ytrue)

MSE =
    5.8120

To get a better understanding of how the smoothing parameter h influences our results, we can
use the output argument results of lwpfindh for plotting criterion values versus h or versus the
fitted  degrees  of  freedom of  the  model  (Loader,  1999),  similar  to  the  “M  plot”  proposed  by
Cleveland & Devlin (1988).

To create the plot, this time we will call lwpfindh with our own list of values for h (using the
input argument hList). And while we're at it, let's try all local polynomials of degree 0 through 3.
The horizontal axis of the plot will be the fourth column of  results (fitted degrees of freedom,
tr(L'L)) and the vertical  axis will  be the second column (criterion value).  The fact that for the
horizontal axis we are using fitted degrees of freedom, rather than the smoothing parameter h (the
first column of results), aids interpretation and comparability. It allows us to directly compare fits
by local polynomials of different degrees (or even different fitting methods).

We will also add global polynomials of the same degrees to the plot. For that we could use some
function designed specifically for this purpose but, since we can simulate global polynomials using
local polynomials with uniform (rectangular) kernel and bandwidth that spans 100% observations,
we will do just that (it is of course much slower than fitting global polynomials directly).

Note that for this plot we don't need the fine-tuning of hBest, so we set argument finetune of
function lwpfindh to false.
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figure;
hold all;
colors = get(gca, 'ColorOrder');
for i = 0 : 3
    % Global polynomial
    params = lwpparams('UNI', i, true, 1);
    [MSE, df] = lwpeval(X, Y, params, 'CV');
    plot(df, MSE, 'x', 'MarkerSize', 10, 'LineWidth', 2, 'Color', colors(i+1,:));
    % Local polynomial
    params = lwpparams('GAU', i, false);
    [hBest, critBest, results] = ...
        lwpfindh(X, Y, params, 'CV', 0:0.01:1, [], [], [], false, false);
    plot(results(:,4), results(:,2), '.-', 'MarkerSize', 10, 'Color', colors(i+1,:));
end
legend({'Global, degree = 0' 'Local, degree = 0' ...
        'Global, degree = 1' 'Local, degree = 1' ...
        'Global, degree = 2' 'Local, degree = 2' ...
        'Global, degree = 3' 'Local, degree = 3'}, 'Location', 'NorthEast');
xlabel('Degrees of freedom');
ylabel('LOOCV MSE');

We can see that, from the candidates, the 2nd degree local polynomial could indeed be a good
choice.
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