
LWP

Locally Weighted Polynomials toolbox for Matlab/Octave

ver. 2.2

Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

User's manual

September, 2016

Copyright © 2009-2016 Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

CONTENTS

1. INTRODUCTION..3

2. AVAILABLE FUNCTIONS..4
2.1. Function lwppredict...4
2.2. Function lwpparams...5
2.3. Function lwpeval...7
2.4. Function lwpfindh...9

3. EXAMPLE OF USAGE...11

4. REFERENCES...14

2

1. INTRODUCTION

What is LWP

LWP is a Matlab/Octave toolbox implementing Locally Weighted Polynomial regression (also
known as Local Regression / Locally Weighted Scatterplot Smoothing / LOESS / LOWESS and
Kernel Smoothing). With this toolbox you can fit local polynomials of any degree using one of the
nine kernels with metric window widths or nearest neighbor window widths to data of any
dimensionality. A function for optimization of the kernel bandwidth is also available. The
optimization can be performed using Leave-One-Out Cross-Validation, GCV, AICC, AIC, FPE, T,
S, or separate validation data. Robust fitting is available as well.

Some of the original papers on locally weighted regression methods include (Cleveland et al.,
1992; Cleveland & Devlin, 1988; Cleveland, 1979; Stone, 1977; Nadaraya, 1964; Watson, 1964).

This user's manual provides overview of the functions available in the LWP toolbox.
LWP toolbox can be downloaded at http://www.cs.rtu.lv/jekabsons/.
The toolbox code is licensed under the GNU GPL ver. 3 or any later version.

Feedback

For any feedback on the toolbox including bug reports feel free to contact me via the email
address given on the title page of this user's manual.

Citing the LWP toolbox

Jekabsons G., Locally Weighted Polynomials toolbox for Matlab/Octave, 2016, available at
http://www.cs.rtu.lv/jekabsons/

3

http://www.cs.rtu.lv/jekabsons/

2. AVAILABLE FUNCTIONS

LWP toolbox provides the following list of functions:
 lwppredict – predicts response values for the given query points using Locally Weighted

Polynomial regression;
 lwpparams – creates configuration for LWP (the output structure is for further use with all

the other functions of the toolbox);
 lwpeval – evaluates predictive performance of LWP using one of the criteria;
 lwpfindh – finds the “best” bandwidth for a kernel.

2.1. Function lwppredict

Purpose:
Predicts response values for the given query points using Locally Weighted Polynomial

regression. Can also provide the smoothing matrix L.

Call:
[Yq, L] = lwppredict(Xtr, Ytr, params, Xq, weights, failSilently)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data. Xtr is a matrix with rows corresponding to observations

and columns corresponding to input variables. Ytr is a column vector of
response values. To automatically standardize Xtr to unit standard
deviation before performing any further calculations, set
params.standardize to true.
If Xq is not given or is empty, Xtr also serves as query points.
If the dataset contains observations with coincident Xtr values, it is
recommended to merge the observations before using the LWP toolbox.
One can simply reduce the dataset by averaging the Ytr at the tied values
of Xtr and supplement these new observations at the unique values of Xtr
with an additional weight.

params : A structure of parameters for LWP. See function lwpparams for details.
Xq : A matrix of query data points. Xq should have the same number of

columns as Xtr. If Xq is not given or is empty, query points are Xtr.
weights : Observation weights for training data (which multiply the kernel weights).

The length of the vector must be the same as the number of observations in
Xtr and Ytr. The weights must be nonnegative.

failSilently : In case of any errors, whether to fail with an error message or just output
NaN. This is useful for functions that perform parameter optimization and
could try to wander out of ranges (e.g., lwpfindh) as well as for drawing
plots even if some of the response values evaluate to NaN. Default value =
false. See also argument safe of function lwpparams.

Output:
Yq : A column vector of predicted response values at the query points (or NaN

where calculations failed).

4

L : Smoothing matrix. Available only if Xq is empty.

Remarks:
Locally Weighted Polynomial regression is designed to address situations in which models of

global behaviour do not perform well or cannot be effectively applied without undue effort. LWP is
a nonparametric regression method that is carried out by pointwise fitting of low-degree
polynomials to localized subsets of the data. The advantage of this method is that the analyst is not
required to specify a global function. However, the method requires fairly large, densely sampled
datasets in order to produce good models and it is relatively computationally intensive.

The assumption of the LWP regression is that near the query point the value of the response
variable changes smoothly and can be approximated using a low-degree polynomial. The
coefficients of the polynomial are calculated using weighted least squares method giving the largest
weights to the nearest data observations and the smallest or zero weights to the farthest data
observations.

For further details on kernels, see remarks for function lwpparams.

2.2. Function lwpparams

Purpose:
Creates configuration for LWP. The output structure is for further use with all the other

functions of the toolbox.

Call:
params = lwpparams(kernel, degree, useKNN, h, robust, knnSumWeights,

standardize, safe)

All the input arguments of this function are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
kernel : Kernel type (string). See user's manual for details. Default value = 'TRC'.

'UNI': Uniform (rectangular)
'TRI': Triangular
'EPA': Epanechnikov (quadratic)
'BIW': Biweight (quartic)
'TRW': Triweight
'TRC': Tricube
'COS': Cosine
'GAU': Gaussian
'GAR': Gaussian modified (Rikards et al., 2006).

degree : Polynomial degree. Default value = 2. If degree is not an integer, let
degree = d1 + d2 where d1 is an integer and 0 < d2 < 1; then a “mixed
degree fit” is performed where the fit is a weighted average of the local
polynomial fits of degrees d1 and d1 + 1 with weight 1 – d2 for the former
and weight d2 for the latter (Cleveland & Loader, 1996).

useKNN : Whether the bandwidth for kernel is defined in nearest neighbors (true)
or as a metric window (false). Default value = true.

h : Window size of the kernel defining its bandwidth. If useKNN = true, h
defines the number of nearest neighbors: for h <= 1, the number of nearest
neighbors is the fraction h of the whole dataset; for h > 1, the number of
nearest neighbors is integer part of h. If useKNN = false, h defines metric

5

window size. More specifically, let maxDist be the distance between two
opposite corners of the hypercube defined by Xtr, then: for the first 7
kernel types, h*maxDist is kernel radius; for kernel type 'GAU', h*maxDist
is standard deviation; for kernel type 'GAR', h is coefficient alpha (smaller
alpha means larger bandwidth; see remarks for details). In any case, h can
also be called smoothing parameter. Default value = 0.5, i.e., 50% of all
data if useKNN = true or 50% of maxDist if useKNN = false and kernel
type is not 'GAR'.
Note that if useKNN = true, the farthest of the nearest neighbors will get 0
weight.

robust : Whether to use robust local regression and how many iterations to use for
the robust weighting calculations. Typical values range from 2 to 5. Default
value = 0 (robust version is turned off). The algorithm for the robust
version is from Cleveland (1979).

knnSumWeights : This argument is used only if useKNN = true and fitting uses observation
weights or robustness weights (when robust > 0). Set to true to define
neighborhoods using a total weight content params.h (relative to sum of all
weights) (Hastie et al., 2009). Set to false to define neighborhoods just by
counting observations irrespective of their weights, except if a weight is 0.
Default value = true.

standardize : Whether to standardize all input variables to unit standard deviation.
Default value = true.

safe : Whether to allow prediction only if the number of the available data
observations for the polynomial at a query point is larger than or equal to
the number of its coefficients. Default value = true, i.e., the function will
fail with error message or output NaN (what is the exact action to be taken,
is determined by argument failSilently of the called function). If safe is
set to false, coefficients will be calculated even if there is rank deficiency.
To avoid these situations altogether, make the bandwidth of the kernel
sufficiently wide. Note that setting safe = false is not available in Octave.

Output:
params : A structure of parameters for further use with all the other functions of the

toolbox containing the provided values (or defaults, if not provided).

Remarks:
Let b(X) be a vector of polynomial terms in X. At each query point solve

to produce the fit where K is a weighting function or kernel

where ||.|| is the Euclidean norm and hλ(x0) is a width function (indexed by λ) that determines the
width of the neighborhood at x0. For metric window widths, hλ(x0) = λ is constant. For k-nearest
neighborhoods, the neighborhood size k replaces λ, and we have hk(x0) = ||x0 – x[k]|| where x[k] is the
farthest of the k nearest neighbors xi to x0.

The LWP toolbox implements the following kernel functions:
1. Uniform (rectangular)

6

2. Triangular

3. Epanechnikov (quadratic)

4. Biweight (quartic)

5. Triweight

6. Tricube

7. Cosine

8. Gaussian

9. Gaussian kernel modified according to (Rikards et al., 2006).

where α is coefficient controlling the locality of the fit (when α is zero, the result of the procedure is
equivalent to global regression) and

.
where x[n] is the farthest of the n data observations to x0.

Some additional details on the choice of bandwidth (Hastie et al., 2009): Large bandwidth
implies lower variance (averages over more observations) but higher bias. Metric window widths
tend to keep the bias of the estimate constant, but the variance is inversely proportional to the local
density. Nearest neighbors exhibit the opposite behaviour; the variance stays constant and the
absolute bias varies inversely with local density. On boundaries, the metric neighborhoods tend to
contain less observations, while the nearest-neighborhoods get wider.

Note that the behaviour of the modified Gaussian kernel is inverted – for larger α the fitting is
more local.

2.3. Function lwpeval

Purpose:
Evaluates predictive performance of LWP using one of the criteria.

Call:
[evaluation, df1, df2] = lwpeval(Xtr, Ytr, params, crit, Xv, Yv, weights,

failSilently, checkArguments)

7

All the input arguments, except the first four, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data. See description of function lwppredict for details.
params : A structure of parameters for LWP. See description of function

lwpparams for details.
crit : Criterion (string):

'VD': Use validation data (Xv, Yv)
'CVE': Explicit Leave-One-Out Cross-Validation
'CV': Closed-form expression for Leave-One-Out Cross-Validation
'GCV': Generalized Cross-Validation (Craven & Wahba, 1979)
'AICC1': improved version of AIC (Hurvich et al., 1998)
'AICC': approximation of AICC1 (Hurvich et al., 1998)
'AIC': Akaike Information Criterion (Akaike, 1973, 1974)
'FPE': Final Prediction Error (Akaike, 1970)
'T': (Rice, 1984)
'S': (Shibata, 1981)
The study by Hurvich et al. (1998) compared GCV, AICC1, AICC, AIC, and
T for nonparametric regression. Overall, AICC gave the best results. It was
concluded that AICC1, AICC, and T tend to slightly oversmooth, GCV has a
tendency to undersmooth, while AIC has a strong tendency to choose the
smallest bandwidth available.
Note that if robust fitting or observation weights are used, the only
available criteria are 'VD' and 'CVE'.

Xv, Yv : Validation data for criterion 'VD'.
weights : Observation weights for training data. See description of function

lwppredict for details.
failSilently : See description of function lwppredict. Default value = false.
checkArguments : Whether to check if all the input arguments are provided correctly.

Default value = true. It can be useful to turn it off when calling this
function many times for optimization purposes.

Output:
val : The calculated criterion value.
df1, df2 : Degrees of freedom of the LWP fit: df1 = trace(L), df2 = trace(L'*L).

Not available if crit is 'VD' or 'CVE'.

Remarks:
The criteria in the LWP toolbox is calculated as follows.
Explicit Leave-One-Out Cross-Validation (Mean Squared Error):

CVE=
1
n
∑
i=1

n

(yi− ^f (−i)(x i))
2

where y i is the response value for the ith training data observation, ^f (−i)(x i) is the estimate of f
obtained by omitting the pair {x i , yi} , and n is the number of observations in the training data.

Closed-form expression for Leave-One-Out Cross-Validation:

CV=
1
n
∑
i=1

n

(
yi− ŷ i
1−lii

)
2

8

where ŷ i is the estimated value of y i and lii is the ith diagonal element of smoothing matrix L.
Generalized Cross-Validation (Craven & Wahba, 1979):

GCV=
nRSS

(n−tr (L))
2

where RSS is the residual sum of squares and tr (L) is the trace of L.
Akaike Information Criterion (Akaike, 1973, 1974):

AIC=log(RSS /n)+2 tr(L)/n

AICC1, improved version of AIC (Hurvich et al., 1998):

AICC1=log(RSS /n)+
(δ 1/δ 2)(n+ tr(L ' L))

δ 1
2
/δ 2−2

where δ 1=tr(B) , δ 2=tr (B
2
) , B=(I−H) ' (I−H) , and I is the identity matrix.

AICC, approximation of AICC1 (Hurvich et al., 1998):

AICC=log (RSS/n)+1+
2(tr(L)+1)
n− tr(L)−2

Final Prediction Error (Akaike, 1970):

FPE=
RSS (1+ tr(L)/n)
n(1−tr (L)/n)

T (Rice, 1984):

T=
RSS
n−2 tr(L)

S (Shibata, 1981):

S=(1/n)RSS (1+2 tr (L)/n)

2.4. Function lwpfindh

Purpose:
Finds the “best” bandwidth for a kernel using a simple grid search followed by fine-tuning.

Predictive performances are estimated using one of the criteria provided by function lwpeval.

Call:
[hBest, critBest, results] = lwpfindh(Xtr, Ytr, params, crit, hList, Xv, Yv,

weights, finetune, verbose)

All the input arguments, except the first four, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Training data. See description of function lwppredict for details.
params : A structure of parameters for LWP. See description of function

lwpparams. Parameter params.h is ignored, as it is the one parameter to
optimize.

9

crit : See description of function lwpeval.
hList : A vector of non-negative window size h values to try (see description of

function lwpparams for details about h). If hList is not supplied, a grid of
values is created automatically depending on params.kernel. For all
kernel types, except 'GAR', equidistant values between 0.05 and 1 with step
size 0.05 are considered. For kernel type 'GAR', the values grow
exponentially from 0 to 100*2^10. The result from this search step is
(optionally) fine-tuned (see argument finetune).

Xv, Yv : Validation data for criterion 'VD'.
weights : Observation weights for training data. See description of function

lwppredict for details.
finetune : Whether to fine-tune the result from the grid search. Nearest neighbor

window widths are fine-tuned using more fine-grained grid. Metric window
widths are fine-tuned using Nelder-Mead simplex direct search. Default
value = true.

verbose : Whether to print the optimization progress to the console. Default value =
true.

Output:
hBest : The best found value for h.
critBest : Criterion value for hBest.
results : A matrix with four columns. First column contains all the h values

considered in the initial grid search. Second column contains the
corresponding criterion values. Third and fourth columns contain df1 and
df2 values from function lwpeval. See function lwpeval for details.

10

3. EXAMPLE OF USAGE

We start by creating a dataset using a two-dimensional function with added noise. The training
data consists of 121 observations distributed in a regular 11×11 grid.

fun = @(X) (30+(5*X(:,1)+5).*sin(5*X(:,1)+5)) .* (4+exp(-(2.5*X(:,2)+2.5).^2));
[gridX1, gridX2] = meshgrid(-1:0.2:1, -1:0.2:1);
X = [reshape(gridX1, numel(gridX1), 1) reshape(gridX2, numel(gridX2), 1)];
rng(1);
Y = fun(X) + 5 * randn(size(X,1), 1);

We will fit 2nd degree local polynomial using the Gaussian kernel with metric window size. To
find a good value for the bandwidth, we will use function lwpfindh with Leave-One-Out Cross-
Validation as a criterion.

First we create a structure of parameters using function lwpparams and then we call function
lwpfindh with these parameters. Note that even though lwpparams creates a structure that includes
also a value for h, lwpfindh ignores it, as it is the one parameter to optimize. lwpfindh performs a
simple Grid Search followed by fine-tuning. Alternatively, we could also supply our own list of
candidate values using the input argument hList but let's try the automatic mode.

params = lwpparams('GAU', 2, false);
[hBest, critBest, results] = lwpfindh(X, Y, params, 'CV');

The function prints its progress (you can turn it off by setting the verbose argument to false)
and finally in its output we get the best found h (hBest), its corresponding criterion value
(critBest), as well as results from each iteration of the Grid Search (results).

Let's update our parameters with the hBest value and create a surface plot. For this we will need
to predict response values for a range of different inputs. This is done using function lwppredict.

params = lwpparams('GAU', 2, false, hBest);

[gridX1, gridX2] = meshgrid(-1:2/50:1, -1:2/50:1);
Xq = [reshape(gridX1, numel(gridX1), 1) reshape(gridX2, numel(gridX2), 1)];
Yq = lwppredict(X, Y, params, Xq);
Yq = reshape(Yq, size(gridX1));
figure;
surf(gridX1, gridX2, Yq);
axis([-1 1 -1 1 80 200]);
hold on;
plot3(X(:,1), X(:,2), Y, 'r.', 'Markersize', 20);

11

For visual comparison, let's plot the true function.

Ytrue = fun(Xq);
figure;
surf(gridX1, gridX2, reshape(Ytrue, size(gridX1)));
axis([-1 1 -1 1 80 200]);

We can also test our LWP configuration on test data, if we have any. For simplicity's sake, let's
just pretend that the grid Xq we created for plotting the true function is actually also our test dataset
(consisting of 2601 observations). We again use lwppredict.

MSE = mean((lwppredict(X, Y, params, Xq) - Ytrue) .^ 2)

MSE =
 5.8120

Or alternatively, we can also use lwpeval with 'VD' as the criterion:

MSE = lwpeval(X, Y, params, 'VD', Xq, Ytrue)

MSE =
 5.8120

To get a better understanding of how the smoothing parameter h influences our results, we can
use the output argument results of lwpfindh for plotting criterion values versus h or versus the
fitted degrees of freedom of the model (Loader, 1999), similar to the “M plot” proposed by
Cleveland & Devlin (1988).

To create the plot, this time we will call lwpfindh with our own list of values for h (using the
input argument hList). And while we're at it, let's try all local polynomials of degree 0 through 3.
The horizontal axis of the plot will be the fourth column of results (fitted degrees of freedom,
tr(L'L)) and the vertical axis will be the second column (criterion value). The fact that for the
horizontal axis we are using fitted degrees of freedom, rather than the smoothing parameter h (the
first column of results), aids interpretation and comparability. It allows us to directly compare fits
by local polynomials of different degrees (or even different fitting methods).

We will also add global polynomials of the same degrees to the plot. For that we could use some
function designed specifically for this purpose but, since we can simulate global polynomials using
local polynomials with uniform (rectangular) kernel and bandwidth that spans 100% observations,
we will do just that (it is of course much slower than fitting global polynomials directly).

Note that for this plot we don't need the fine-tuning of hBest, so we set argument finetune of
function lwpfindh to false.

12

figure;
hold all;
colors = get(gca, 'ColorOrder');
for i = 0 : 3
 % Global polynomial
 params = lwpparams('UNI', i, true, 1);
 [MSE, df] = lwpeval(X, Y, params, 'CV');
 plot(df, MSE, 'x', 'MarkerSize', 10, 'LineWidth', 2, 'Color', colors(i+1,:));
 % Local polynomial
 params = lwpparams('GAU', i, false);
 [hBest, critBest, results] = ...
 lwpfindh(X, Y, params, 'CV', 0:0.01:1, [], [], [], false, false);
 plot(results(:,4), results(:,2), '.-', 'MarkerSize', 10, 'Color', colors(i+1,:));
end
legend({'Global, degree = 0' 'Local, degree = 0' ...
 'Global, degree = 1' 'Local, degree = 1' ...
 'Global, degree = 2' 'Local, degree = 2' ...
 'Global, degree = 3' 'Local, degree = 3'}, 'Location', 'NorthEast');
xlabel('Degrees of freedom');
ylabel('LOOCV MSE');

We can see that, from the candidates, the 2nd degree local polynomial could indeed be a good
choice.

13

4. REFERENCES

1. Akaike H., Statistical predictor identification, Annals of Institute of Statistical Mathematics, 22
(2), 1970, pp. 202-217.

2. Akaike H., Information theory and an extension of the maximum likelihood principle.
Proceedings of 2nd International Symposium on Information Theory, eds Petrov B. N. and
Csaki F., 1973, pp. 267-281.

3. Akaike H., A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19 (6), 1974, pp. 716-723.

4. Cleveland W. S., Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of
the American Statistical Association, 74 (368), 1979, pp. 829-836.

5. Cleveland W. S., Devlin S. J., Locally weighted regression: An approach to regression analysis
by local fitting, Journal of the American Statistical Association, 83 (403), 1988, pp. 596-610.

6. Cleveland W. S., Grosse E., Shyu W. M., Local regression models. Chapter 8 of Statistical
Models in S, eds Chambers J. M. and Hastie T. J., Wadsworth & Brooks/Cole, 1992

7. Cleveland W. S., Loader C. L., Smoothing by Local Regression: Principles and Methods,
Statistical Theory and Computational Aspects of Smoothing, eds Haerdle W. and Schimek M.
G., Springer, New York, 1996, pp. 10-49.

8. Craven P., Wahba G., Smoothing noisy data with spline functions. Numer. Math., 31, 1979, pp.
377-403.

9. Fan J., Gijbels I., Local polynomial modelling and its applications. Chapman & Hall, 1996
10. Hastie T., Tibshirani R., Friedman J., The elements of statistical learning: Data mining,

inference and prediction, 2nd edition, Springer, 2009
11. Hurvich C. M., Simonoff J. S., Tsai C.-L., Smoothing Parameter Selection in Nonparametric

Regression Using an Improved Akaike Information Criterion, Journal of the Royal Statistical
Society, Series B (Statistical Methodology), 60 (2), 1998, pp. 271-293.

12. Loader C., Local Regression and Likelihood, Springer, New York, 1999
13. Nadaraya E. A., On Estimating Regression. Theory of Probability and its Applications, 9 (1),

1964, pp. 141-142.
14. Rice J., Bandwidth choice for nonparametric regression. The Annals of Statistics, 12 (4), 1984,

pp. 1215-1230.
15. Rikards R., Abramovich H., Kalnins K., Auzins J., Surrogate modeling in design optimization

of stiffened composite shells, Composite Structures, 73 (2), 2006, pp. 244–251.
16. Shibata R., An Optimal Selection of Regression Variables, Biometrika, 68 (1), 1981, pp. 45-54.
17. Stone C., Consistent nonparametric regression. Annals of Statistics, 5 (4), 1977, pp. 595-645.
18. Watson G. S., Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A,

26 (4), 1964, pp. 359-372.

14

