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1. Abstract 
Extensive application of advanced composite materials such as Carbon Fibre Reinforced Plastics (CFRP) emerges 
in design of aerospace structural components. Outstanding weight-related stiffness and strength properties in 
combination with structural topology solutions may lead to exploitation of full-load bearing potential of composite 
structures as utilization of the post-buckling region. In order to fully exploit the load-carrying capacity of such 
structures an accurate and reliable simulation is indispensable. That, however, requires fast tools which are capable 
of simulating the structural behaviour beyond skin buckling bifurcation points deep into the post-buckling 
phenomena up to the collapse of structure. In this paper a metamodeling methodology is proposed for 
post-buckling simulation of cylindrical-stiffened fuselage structures. Proposed methodology for elaboration of the 
fast simulation procedure for axially loaded stiffened cylinder structures is based on utilization of space-filling 
design of experiments and parametric and non-parametric approximations. For determination of the most suitable 
metamodeling technique different methods are compared – second-order global polynomials, second-order 
Locally-Weighted Polynomials, adaptively constructed sparse polynomials, Radial Basis Functions, Kriging, 
Multivariate Adaptive Regression Splines, and Support Vector Regression. Continuous design variables (the 
structural geometrical dimensions) are used together with a discrete variable (number of stiffeners), thus allowing 
to scale the full-scale structure towards the stiffened panel designs. The proposed and validated simulation 
procedure is an efficient optimum design tool in elaboration of the trade of design and in assessment of 
parametrical sensitivity analysis. It enables elaboration of Pareto-optimal fronts which can be used in the optimum 
design guidelines to realise the full potential of the stiffened composite structures subjected to uniform axial 
compression. 
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3. Introduction 
Demanding requirements for industrial applications of carbon-epoxy-reinforced composite structures can be met 
by reducing their structural weight within the safe, however not yet certified, design boundaries. In particular, 
great potential exists for the future increase of effectiveness of stiffened composite structures by allowing 
post-buckling of the structural elements to occur during the exploitation of the structure [1,2]. Nevertheless, even 
with the dramatic increase of computation power within the last decade, current numerical procedures still are 
incompatible for the direct optimisation of the post-buckling behaviour of stiffened cylindrical composite 
structures with sufficient reliability and efficiency [3]. 
In the current research, a metamodeling methodology has been developed and validated for the design and 
optimisation of a cylindrical-stiffened fuselage structures, loaded in compression well beyond the initial buckling 
load. A stiffened fuselage structure is assumed to consist of several stiffened panels which are more widely 
experimentally tested and numerically verified in the literature [4,5,6]. By evaluating the interaction ratio between 
the full-scale structure and stiffened panels it is possible to decrease the design time while the design reliability 
should remain close to the original level. The methodology used to determine the post-buckling response 
behaviour of stiffened panels and structures mainly relies on applying simplifying assumptions using 
semi-empirical/empirical data [3]. By employing the finite element method and explicit analysis procedures, it is 
possible to simulate the post-buckling behaviour of stiffened panels without having to place the same emphases on 
simplifying assumptions or empirical data. Moreover it could be validated that both the curved panel and the 
full-scale cylinder designs have the same buckling and post-buckling mode shape, thus the post-buckling pattern 
control could be applied as additional response to increase the design reliability. Therefore the resulting design 
procedure provides a time/reliability effective analysis tool for the safe exploitation of composite full-scale 
stiffened structures under the axial compression. 
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4. Fast Design Procedure 
Design of computer experiments and approximation models are essential for efficiency and effectiveness in 
engineering numerical analyses of complex systems in which designers have to deal with multi-disciplinary and 
multi-objective analysis using very complicated and expensive-to-run computer analysis codes. To cut down the 
computational cost, metamodels, also referred to as surrogate models, are constructed while treating the analysis 
codes as black boxes. Metamodels approximate the behaviour of the analysis codes as closely as possible while 
being computationally cheaper to evaluate [7,8,9]. The process of design optimisation involving metamodeling 
usually comprises three major steps which may be interleaved iteratively: 1) sample selection (known as design of 
experiments) [10,11,12]; 2) construction of the metamodel that best describes the behaviour of the problem and 
estimation of its predictive performance; 3) employment of the metamodel in the optimisation, design space 
exploration, what-if analysis and other tasks. Figure 1 depicts a metamodeling flowchart for the design of stiffened 
composite structures where sampling within the domain of interest is performed extracting the numerical 
pre-buckling and post-buckling responses and elaborating the numerical values by simplifying the load-shortening 
reactions. Theses response values are then approximated by means of parametric or non-parametric approximation 
functions. The developed metamodels can be further used for the design optimisation, weight savings, parametric 
sensitivity analysis, Pareto-optimality evaluations etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Metamodeling flowchart for design of full-scale stiffened composite structures 
 
5. Metamodeling of Pre-buckling and Post-buckling Responses 
The applied procedure is based on building of metamodels employing sequential experimental design [12] and 
both parametrical and non-parametrical approximation functions. The metamodels are built using stiffened 
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fuselage structure geometrical variables extracting buckling/post-buckling structural responses. The numerical 
load-shortening responses, obtained from explicit FEM simulations by ANSYS/LS-DYNA (Figure 2) of 
composite stiffened structures subjected to buckling and post-buckling, have been simplified and the numerical 
values are extracted for the building of the metamodels. 
 

 
 

Figure 2: Typical post-buckling mode shape for full-scale stiffened structure and corresponding panel designs 
obtained with explicit ANSYS/LS-DYNA 

 
5.1 Simplification Strategy for Load-shortening Response 
It may be generalized that simplification of the load-displacement response in order to develop corresponding 
metamodels is based on the numerically obtained load-shortening curves (Figure 3), where the axial load P, 
stiffness k, and axial shortening u are functions of the design parameters. For this reason, the load-shortening curve 
is divided into three linear sections [9] representing pre-buckling load shortening, post-buckling load shortening, 
and the collapse region. Each section occupies a region where the load-shortening interconnection is linear and 
reaches the diverging point between the two linear curves, which is close to the skin buckling and stiffener 
buckling load obtained experimentally. Minimizing the discrepancy criterion allows controlling the diverging 
points between two correlated regions in the load-shortening curves. In validation by natural experiments, the 
numerical post-buckling critical load is more conservative than that obtained in physical tests [4,5,6]. Typical 
load-shorting of stiffened structure undergoing buckling and post-buckling response are shown in Figure 3 where 
corresponding simplifications have been overlaid indicating the k1 pre-buckling, k2 post-buckling, k3 collapse 
regions stiffnesses as well as skin buckling P1 and stiffener buckling load P2. 
 

 
 

Figure 3: Typical load-shortening curve obtained with ANSYS/LS-DYNA overlaid with simplification approach 
subdividing load-shortening curve into three linear sections 

 
5.2 Design Variables and FEM Model 
Four-stiffener (Design 1) and five-stiffener (Design 2) panels with a regular distribution of the stiffeners around 
the arch (Figure 4), in order to represent the same post-buckling mode shape within the whole domain of interest, 
have been incorporated into the design of the full scale fuselage structure. Geometrical variables are taken as 
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design configurations representing the particular domain of interest, where L is the panel length, R is the panel 
inner radius, b is the distance between the stiffeners, and h is the stiffener height (see Table 1). 
 

Table 1: Stiffened panel structure with design geometrical variables 
 

Name Notation Lower bound Upper bound Units 
Panel length L 400 800 mm 
Panel inner radius R 600 2000 mm 
Stiffener spacing b 100 200 mm 
Stiffener height h 12.5 30 mm 

 
CFRP IM7/8552 laminate material with the following mechanical characteristics (fixed design parameters) was 
used for skin and stiffeners: Ex = 147.3 GPa; Ey = Ez = 11.8 GPa; Gxy = Gxz = Gyz = 6.0 GPa; ν = 0.3; 
ρ = 1600 kg/m³. The total thickness of the skin is s = 1 mm and the total thickness of the stiffener is t = 3 mm. For 
the skin, symmetric laminates with fixed ply angles [90/±45/0]s are considered similar to the symmetric laminate 
lay-up ply angles [±45/02]3s for the stringer. The stiffener was bonded to the skin using a one-step flange of 40 mm 
for the Design 1 and 48 mm for the Design 2. Clamped upper and lower edges and simply supported longitudinal 
edges were taken as panel boundary conditions [5,6]. 
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Figure 4: Stiffened structure with design geometrical variables 
 
5.3 Metamodeling 
A set of sequential design of computer experiments using the MSE space-filling criterion and the sequential point 
arranging method [12] were conducted for a four-variable design space with 51 sample points [9]. For accurate 
approximation of the responses seven approximation techniques were evaluated: full global second-order 
polynomials (FP), second-order Locally-Weighted Polynomials (LWP) [13,8], Radial Basis Function (RBF) 
interpolation [14], Kriging [15], Multivariate Adaptive Regression Splines (MARS) [16], Support Vector 
Regression (LVR) [17,18], and Adaptive Basis Function Construction (ABFC) [19,20,8]. LWP used the Gaussian 
weight function with the value of the bandwidth parameter found by leave-one-out cross-validation. RBF used the 
multi-quadric basis functions with the shape parameter equal to one. Kriging used first-order polynomial as a trend 
function and employed the Gaussian correlation function. MARS was that of piecewise-cubic type without special 
limitation of the number of basis functions. SVR used the Radial Basis Function kernel and the improved 
Sequential Minimal Optimisation algorithm [18] for which the complexity parameter and the gamma parameter 
were found using grid search and cross-validation from the range of values {10-1, 100, 101, 102} for the complexity 
parameter and {10-2, 10-1, 100, 101} for the gamma parameter. ABFC involved the ensembling of the individually 
built sparse polynomials [20]. All the methods except SVR are implemented in the freely-available software tool 
VariReg [21] (in this study all the other less important settings not mentioned here were left at the default values). 
For SVR the implementation in the Weka software [22] was employed. Note that the employed source code for the 
Kriging technique was developed by [23]. 
To evaluate predictive performances of the built metamodels, in this study a 10-fold cross-validation method is 
used in which the full data set is divided in 10 equally (or approximately equally) sized subsets. In each of the 10 
cross-validation iterations nine of the subsets are used for model building and one left subset is used as an 
independent test data set for evaluation of the built model. As the model accuracy measure the following average 
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relative measure was used: 
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where yji is the real response value for the ith test point of the jth test set; F-j(xji) is the predicted response value at 
the ith test point of the jth test set by a model which is built not using the jth data fold; nj is the number of test points 
in the jth test set. It should be noted that, as it can be seen from Eq.(10), the CVErr is calculated using strictly only 
the test data. 
The obtained approximation results are summarized in Table 2 and Table 3. Table 2 shows CVErr values averaged 
over all the eight responses for full-scale fuselage Design 1 and Design 2 as well as corresponding five and four 
stiffener panels. It is observed that in this study for all the responses the overall best approximation results were 
obtained using the ABFC technique. Table 3 shows averaged CVErr values of the ABFC for the individual 
responses. For the variable k1 an error of about 1% is obtained however for all the other variables the error is 
around 9%. The elaborated ABFC models are used in the further studies described in Section 6. 
 

Table 2: CVErr results averaged over all eight responses for full scale fuselages and corresponding panels 
 

 FP LWP RBF Kriging MARS SVR ABFC 
Design 1 full-scale structure 7.64 7.53 8.09 8.68 8.51 8.09 6.75 
Design 1 four-stiffener panel structure 8.04 8.72 9.94 8.63 8.94 8.38 7.75 
Design 2 full-scale structure 11.03 12.46 11.32 10.39 12.24 10.93 9.95 
Design 2 five-stiffener panel structure 9.93 10.27 13.00 10.03 9.76 9.57 8.71 

 
Table 3: CVErr results for the individual variables approximated by ABFC (averaged over all four designs) 

 
 k1 k2 P1 P2 P3 u1 u2 u3 

CVErr 0.91 8.74 9.02 9.41 7.88 9.57 10.90 9.89 
 
An example of a comparison of load-shortening curves of metamodels developed using the ABFC versus curves of 
numerical simulations with FEM analysis and linear piece-wise simplification is shown in Figure 5. By comparing 
these curves, it is noticed that metamodels usually are more conservative than actual FEM analyses. This can be 
outlined as advantage if the metamodels are used for preliminary design of stiffened structures. 
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Figure 5: Material softening in three-stiffener design influence over numerical load-shortening curves 
 
6. Results 
The metamodels are incorporated into the optimisation procedure with dual aim. First aim was to estimate the 
scaling factor between the panel design and the full-scale structure and the second aim was to derive Pareto 
frontiers and optimum solutions which could be used in elaboration of the optimum design guidelines. 
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6.1 Estimation of the Scaling Factor between the Full-scale and the Panel Structure 
One of the principal research aims was to estimate the scaling factor C between the full-scale structures and the 
panel designs. It should be noted that the two designs considered had even number (Design 1) and odd number 
(Design 2) of stiffeners. Nevertheless, by averaging the domain of interest for both designs the estimated scaling 
factors were relatively similar (Table 4). However, Design 1 had lower standard deviation thus it represents a 
lower parametrical sensitivity. Also it should be noted that the scaling factors may also be estimated using 
approximation models depending on the four design variables and using the scaling factors as responses. Such 
procedure would provide a much higher accuracy than the simple average value used here – in Figure 6 and 7 the 
changes in the scaling factor depending on the design variables are clearly pronounced. 
 

Table 4: Average scaling factors and their confidence intervals 
 

 k1 k2 P1 P2 P3 u1 u2 u3 

Design 1 0.70 
±0.03 

0.69 
±0.11 

1.41 
±0.19 

1.39 
±0.24 

1.41 
±0.24 

0.16 
±0.08 

0.16 
±0.08 

0.16 
±0.10 

Design 2 0.62 
±0.04 

0.77 
±0.11 

1.49 
±0.41 

1.45 
±0.37 

1.35 
±0.35 

0.22 
±0.09 

0.19 
±0.09 

0.18 
±0.09 

 
By graphical validation in Figure 6 and Figure 7 one could notice that both designs tend to have similar scaling 
factor dependencies. Thus also the scaling factor transition between the number of stiffeners in the structure and 
load carrying capacity can be extracted. By comparing the dependency from number of stiffeners N versus the 
panel length L and the height of the stiffeners h it is obvious that Design 2 with the relatively narrower flange step 
is more sensitive to the stiffener total height. Furthermore, in the case of low number of stiffeners the scaling factor 
tends to diverge, this could be explained by possible evolvement of a different post-buckling mode shape pattern. 
 

 
 

Figure 6: Scaling factor (pre-buckling stiffness k1) bar charts for Design 1 
a) R = 0.6 and h = 0.02; b) R = 1.0 and L = 0.6 

 

 
 

Figure 7: Scaling factor (pre-buckling stiffness k1) bar charts for Design 2 
a) R = 0.6 and h = 0.02; b) R = 1.0 and L = 0.6 
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6.2. Optimisation 
The full domain of possible response characteristics for both designs of the full-scale structures have been 
evaluated by forming the cloud-type representations for combinations of the possible response values as show in 
Figure 8. The skin buckling load P1 and the post-buckling reserve ratio P2/P1 have been elaborated versus the total 
volume Vtot of the full-scale structure or the pre-buckling stiffness k1. 
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Figure 8:  Resulting clouds of combinations of response values for Design 1 (upper two) and Design 2 (lower two) 
 
Here the combinations of the minimum values per each dimension represent Pareto-optimal solutions. They have 
been further elaborated to create Pareto-optimal fronts (Figure 9) for the optimum design guidelines. Furthermore, 
it may be stated that the results form dense clouds of results so that there are wide design variety to achieve 
alternative structural qualities without almost any weight or performance penalty. 
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Figure 9: Pareto-optimal fronts for total volume Vtot versus post-buckling reserve ratio P2/P1 for Design 1 (on the 

left) and Design 2 (on the right) 
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Moreover, it may be generalised that most variety of design choices are supported mainly for the relatively low 
load carrying capacity, thus design optimisation including the post-buckling reserve ratio would be a reasonable 
way for further decrease of the structural weight in composite stiffened structures. It also may be stated that 
designs with high number of stiffeners – having additional volume penalty, tend to have high pre-buckling 
stiffness and strength meanwhile narrowing the post-buckling reserve ratio. 
 
7. Conclusions 
It was shown that the methodology based on the metamodeling of the load-shortening response dividing it into 
three piece-wise linear sections can be elaborated for the fast simulation practice for preliminary design of curved 
stiffened panels. It is concluded that the elaborated metamodels are efficient in surrogating the FE analysis of the 
different considered stiffened structures. For the particular metamodeling tasks the Adaptive Basis Function 
Construction approach of sparse polynomial construction gave the most accurate metamodels – for all the 
variables except the pre-buckling stiffness variable k1 a cross-validation relative error of about 9% is obtained 
while for the k1 the error is about 1%. 
Moreover it was demonstrated that the acquired metamodels can be utilized for extracting of the transition scaling 
factor between the full-scale structures and the stiffened curved panel designs without the compromising the 
preliminary design reliability. 
Also the full domain of possible response characteristics from the full-scale stiffened structure Design 1 and 
Design 2 have been elaborated in order to estimate the volume or structural stiffness dependencies versus skin 
buckling load and post-buckling reserve ratio. Such a procedure allows the designer to identify the parametrical 
sensitivities and guides for the structural weight savings. Additionally also Pareto-optimal fronts have been 
elaborated for the full-scale composite structures estimating the design configurations applicable for elaboration of 
the optimum design guidelines. 
It should be noted that the resulting design procedure is more than 1000 times faster than FE design and provides 
an effective optimisation tool for the preliminary study of composite stiffened shells in addition to optimum weight 
design. 
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