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This paper deals with the comparison of parametric and non-parametric metamodels 
used in design procedure of pultruded glass fibre reinforced plastic (GFRP) deck panels. 
Stiffened deck structure loaded under the three-point bending and uniform distributed load 
has been examined. A set of five hundred sample points has been evaluated by means of 
finite element analysis and stiffness and strength responses extracted for building of 
metamodels. Moreover, set of complimentary physical experiments has been carried out in 
order to verify the numerical model. Both advantages and disadvantages of parametric and 
non-parametric metamodels have been drawn for a specific engineering application. 

I. Introduction 
OMMON optimum design practice of stiffened structures under any loading combinations should involve 
extensive finite element analysis with complimentary experimental validation. However, such a procedure is 

only partly efficient as besides trade-off design the designer is seeking for alternatives in the overall perspective. 
Despite the advances in rapidly growing computational capacity, as in High Performing Computing or in GRID 
technologies, the enormous computational cost of complex engineering simulations makes it impractical to rely 
exclusively on simulation for the purpose of design optimization1. As a good practice, one could use mathematical 
approximations instead of full scale analyses, thus reducing the level of numerical optimization complexity. 
Metamodels, also called surrogate models, are constructed from response approximations extracted from actual 
simulation models. In particular, for determination of the most suitable metamodeling technique fitting to deck 
under the bending load design procedure a different parametric and non-parametric approximations have been 
compared – low order global polynomials, locally weighted polynomials, partial polynomials, and Multivariate 
Adaptive Regression Splines. 

Important research issue associated with metamodeling is how to achieve good accuracy of a metamodel with 
reasonable number of sample points. The sampling techniques, often referred to as design of experiments, should be 
implemented to reduce the number of simulation runs without decreasing the accuracy of the metamodel. The 
differences between sampling strategies for physical experiments and for computer experiments should be noted. 
Whilst physical experiments have statistical experimental errors, numerical analyses are deterministic and results are 
obtained with 100% repetition and no statistical variance of model parameters2,3,4. Currently, there is a wide range of 
literature concerning different methods for DoCE5, which include many approaches for space-filling designs. It 
should be noted that the first space-filling design criterion2,3 for numerical experiments was proposed at Riga 
Technical University by Audze and Eglajs. While the accuracy of a metamodel is directly related to the 
approximation technique used and to properties of the problem itself, the type of sampling approaches6 have a direct 
influence on the approximation performance. It is generally accepted that space-filling designs, for example the 
Latin Hypercube design, are preferable for building of metamodels. In the current study, to reduce the number of 
computations, experimental design optimized according to Mean Square Error (MSE) criterion7,6 has been selected. 
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II.  Case study of pultruded GFRP deck structure 
Among many other composite materials, the glass fibre reinforced polymer (GFRP) composites has been 

demonstrated to have great success in bridge engineering applications. It can be generalized that characteristics of a 
composite elements or structures can be tailored and designed to meet any desired specifications. The favorable 
characteristic of composite bridge decks are a high strength to weight ratio efficiency and relatively low material and 
manufacturing costs. There have been already developed and installed different deck systems with comparatively 
small spans up to 10 m8, however span lengths of GFRP deck applications are foreseen to expend over the next 
years. Most of the GFRP bridges constructed up to now9 used multi-cellular pultruded deck systems. In principle, 
two construction forms are used: multi-cellular deck panels from adhesively bonded pultruded shapes and sandwich 
panels with different core structures10,11. 

In present work, design of GFRP composite stiffened panel structures has been considered similar to ones 
currently manufactured by Rishon-Inter.Ltd (http://www.rishon-inter.lv). Eleven I-type stiffener deck design, as 
shown in Figure 1, has been elaborated in parallel with experimental tests performed at Riga Technical University, 
Institute of Materials and Structures using dedicated test equipment. Three-point bending test case has been 
considered for numerical analyses and physical tests along with uniformly distributed load test case that has been 
elaborated only numerically. 

 
 
 
 
 
 
 
 
 
 
The flexural stiffness response of GFRP pultruded deck structure has been evaluated numerically by finite 

element method commercial software ANSYS12 employing SHELL 181 4-node shell element. The mechanical 
properties for glass fibre composite used for full-scale analysis have been extracted by small coupon tests in tension 
and bending. Numerical values of load-deformation curve, stress, and strain distribution over the tested deck 
structure were extracted and incorporated in design of strain gauge locations for experimental validation. The 
numerical deflection and stress graphs of three-point bending test are shown in Figure 2. A comparative study 
between numerical and experimental results will be given in the chapter III. 

 
 The choice of design variables should represent all geometrical parameters in optimum design procedure. 

However most of those variables are rationally interconnected. Exploration of non-rational variable combination 
mostly leads to relatively high approximation errors. In particular, when non-proportional ratios of span and height 
are used for bending problems this usually causes singularity in approximations. Therefore geometrical design 
variables with corresponding ratio variables have been proposed11 for metamodeling procedure. As geometrical 

 
Figure 1. GFRP Deck geometry with parametrical variables 

 
Figure 2. Three point bending numerical test – deflection (left) and stress-distribution (right) graphs   
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variables the panel length parameter L and the panel height parameter h along with two plate thicknesses have been 
taken: the cover plate thickness t1 and the stiffener thickness t2. Moreover, rational design variables as kb (ratio 
between the panel length and width) and kh (stiffener spacing parameter ratio between I-stiffener foot width and 
panel height) have been proposed.  Such a procedure is required to restrain the combination where stiffener spacing 
is narrower than the deck height h. The numerical bounds of design variables are given in Table 1. 

 
 In order to achieve the best performance (minimal prediction error of metamodels), a space-filling design of five 

hundred sample points optimized according to the Mean Squared Error6,7 uniformity criterion has been selected. A 
numerical sampling procedure involves a large amount of analyzed numerical data that are unacceptably time 
demanding. Therefore, all numerical data sets have been analyzed in parallel, exploring the LatvianGrid 
(http://grid.lumii.lv) computing capabilities, thus reducing the necessary time and outsourcing the computational 
capacities. 

III. Physical experiments 
Three three-point bending tests until collapse of the structure for real deck panels have been performed. Adding 

the validation test that has been outfitted with strain-gauges and loaded until 60% of the total collapse load. The 
experimental setup of a one-meter span length and corresponding deflected collapse mode shape is shown in Figure 
3. During the tests, the load-versus-deflection curves (outlined in Figure 4) and strains have been recorded by means 
of load cell and the strain gauge readings. Thus the data from physical experiments has been implemented in 
validation procedure of ANSYS12 finite element model as summarized in Table 2. 

 
 
 

Table 1. Design space for deck structure 
Name and notation Lower bound Upper bound Units 
Deck length L 0.6 4 m 
Deck stiffener height h 0.03 0.10 m 
Plate thickness t1 0.003 0.006 m 
Stiffener thickness t2 0.003 0.006 m 
Deck length to width ratio kb 1.5 3  
Stiffener spacing ratio kh 2 3  

  
Figure 3. The experimental three-point bending test setup and collapse mode of the stiffened deck structure 
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 The test results obtained experimentally for four tested deck structures have been compared with values obtained 
numerically by ANSYS12. One could observe from the Figure 4 and the Table 2 that all panels have practically the 
same loading stiffness. However, there is a certain divergence between obtained critical load levels. Nevertheless, in 
validation procedure the numerical deflection results have about 10% discrepancy with physical test results what 
should be considered as a good agreement between actual (manufactured) and numerical model. Moreover, 
numerical stress threshold value practically corresponds to the value obtained by small specimen tension tests. 
Validation procedure outlined that the load level corresponding to deflection limit legislated by building codes 
[1/250 to 1/150 of the deck span] are practically one fifth of the ultimate stress value. 
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Figure 4. Load-versus-deflection curves obtained experimentally 

Table 2. Validation between experimental and numerical results 

Load(N) 
1st panel test, 
deflection 
(mm) 

2nd panel test, 
deflection 
(mm) 

3rd panel test, 
deflection 
(mm) 

4th panel test, 
deflection 
(mm) 

ANSYS, 
deflection 
(mm) 

ANSYS 
stresses 
(MPa) 

5000 4.1 3.1 4.1 3.4 3.5 23.5 
10000 7.4 6.3 7.1 6.6 7.1 47.1 
15000 10.7 9.4 10.2 9.8 10.6 70.6 
20000 14.0 12.5 13.4 13.0 14.2 94.1 
25000 17.3 15.6 16.5 16.3 17.7 118 
30000 20.6 18.8 19.7 19.6 21.2 141 
35000 24.1 22.1 22.9 N.A. 24.8 165 
40000 27.5 25.3 26.2 N.A. 28.3 188 
43500 30.1 30.4 28.5 N.A. 30.1 205 
48000 33.4 - 32.1 N.A. 34.0 226 
49800 35.1 - - N.A. 35.3 234 
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IV. Employed metamodeling techniques 
This section briefly overviews the employed metamodeling techniques: full global polynomials and locally 

weighted polynomials of 2nd, 3rd, and 4th order, Multivariate Adaptive Regression Splines (MARS), and partial 
polynomials constructed using Adaptive Basis Function Construction (ABFC) approach. 

As described by Simpson et al.13, it is assumed that the inputs to the actual computer analysis are supplied in 
matrix x, and the outputs (or responses) from the analysis – in vector y. Then the true computer analysis code 
evaluates 

 )(xgy =  (1) 

where g(x) is a complex engineering analysis function. The computationally efficient metamodel approximation is 

 )(ˆ xfy =  (2) 

such that 

 ε+= yy ˆ  (3) 

where ε  includes both approximation and random errors. 

A. Full global polynomials 
Low-order polynomials are the most widely used metamodels1,13,14. For example, second-order polynomial can 

be defined as follows: 
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where d is the number of input variables; β0, βi, βij are coefficients usually determined by the ordinary least squares 
method minimizing 
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where β are the calculated coefficients; n is the number of sample points; )(ˆ iy  is the value of the metamodel’s 

response for the i-th sample point; )(iy  is the actual value of the response of the computer analysis code in vector y. 
A more complete discussion on the polynomial metamodels and least squares method can be found in Myers & 
Montgomery14. In the present study full polynomials of 2nd, 3rd, and 4th order have been employed. 

B. Locally weighted polynomials 
Locally weighted polynomial approximation was originally proposed by Cleveland15. It was designed to address 

situations in which the global polynomials do not perform well or cannot be effectively applied without undue 
effort. The approximation is carried out by pointwise fitting of low-order polynomials to localized subsets of the 
data. The advantage of this method is that the analyst is not required to specify a global function of the data. 
However, the method requires considerably higher computational resources. 

The assumption of the local polynomial approximation is that near the query point the value of the actual 
response changes smoothly and can be approximated using a low-order polynomial. The coefficients of the 
polynomial are then calculated using the weighted least squares method giving the largest weights to the nearest 
(usually according to the Euclidian distance) sample points and the lowest or zero weights to the farthest sample 
points. 

The coefficients β are calculated by the weighted least squares minimizing 



 
Association for Structural and Multidisciplinary Optimization in the UK (ASMO-UK) 

 

6

 ( )∑
=

−=
n

i
iiiquery yyxxw

1

2
)()()( ˆ),(minarg

β
β  (6) 

where w is a weight function; xquery is the query point nearest neighbors of which will get the highest weights; )(ix  is 
the i-th point in vector x. The weight function w depends on the Euclidean distance (in scaled [-1,1]d space) between 
the point of interest xquery and the points of observations x. One of the most widely used weight functions is the 
Gaussian weight function11: 

 ( )2
)( exp),( αμ−=iquery xxw  (7) 

where α  is a coefficient and the μ  can be calculated as 

 )()( )( farthestqueryiquery xxxx −−=μ  (8) 

where ⋅  is the Euclidian norm; xfarthest is the farthest point in the neighborhood of the point xquery. In general, the 

Gaussian weight function with constant value 21=α  is used in local approximations varying only the value of the 
considered nearest neighbors (unlike in equation (6) where all the sample points are used)11. However, in the present 
study all the sample points have been used and the locality of the approximation has been controlled by varying the 
value of the coefficient α . If α  is equal to zero then local approximation transforms into global approximation. 
The best value of α  is found using the leave-one-out cross-validation technique16. In the present study locally 
weighted polynomials of 2nd, 3rd, and 4th order have been employed. 

C. Multivariate Adaptive Regression Splines 
Multivariate Adaptive Regression Splines17,18 was proposed as a method for flexible regression modeling of high 

dimensional data (i.e., a large number of input variables). The model takes the form of an expansion in product 
spline basis functions, where the number of basis functions as well as the parameters associated with each one 
(product degree and knot locations) are automatically determined by the data through a forward/backward iterative 
approach. Compared to polynomial approximations, the use of MARS for engineering design is relatively new. 
However, its application is drawing an increasing attention of the researchers (e.g., Jin et al.1). 

MARS model can be defined as a sum of basis functions17,18: 

 ∑
=
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0 )(ˆ ββ  (9) 

where fi(x) is a basis function; k is the number of basis functions in the model except for the constant basis function 
1)(0 =xf  coefficient of which is the β0. The basis functions are of the form 
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where di is the number of variables (interaction order) in the i-th basis function; 1±=jis ; ),( ijvx  is the v-th variable, 

dijv ≤≤ ),(1 ; tji is knot location on each of the corresponding variables. The subscript ‘+’ means that the function 
is a truncated power function17,18. The coefficients β are again determined by the ordinary least squares method 
(equation (5)). In the present study piecewise-cubic MARS version 3.6 without a specific restriction of the number 
of basis functions or interaction orders has been employed. 

D. Partial polynomials 
Low-order global polynomial approximations have been well accepted in engineering practice, as they require 

low number of sample points and are computationally very efficient. On other hand they can not approximate highly 



 
Association for Structural and Multidisciplinary Optimization in the UK (ASMO-UK) 

 

7

nonlinear behavior. Instead, higher-order polynomials can be employed. However, if no special care is taken they 
tend to overfit the data and produce high errors in regions where the sample points are relatively sparse. One 
possible remedy for the overfitting problem is employment of the subset selection (also called model building) 
techniques13,14. The techniques are aimed to identify the best subset of polynomial terms (or basis functions) to 
include in the model and to remove the unnecessary ones, in this manner creating a partial polynomial model (in lieu 
of ‘full’ model) of increased predictive performance. However, the approach of subset selection assumes that the 
chosen fixed full set of predefined basis functions (usually just by choosing a fixed maximal order of the 
polynomial) contains a subset that is sufficient to describe the target relation sufficiently well. Hence the 
effectiveness of subset selection largely depends on whether or not the predefined set of basis functions contains 
such a subset. 

There exists a different approach for polynomial model building which does not assume a predefined set of basis 
functions – Adaptive Basis Function Construction19,20. The approach allows generating polynomials of arbitrary 
complexity and order without the requirement to predefine any basis functions or to set the maximal order of the 
polynomial (or any other hyperparameters) – all the required basis functions are constructed adaptively. 

Generally a polynomial model can be defined as a linear summation of basis functions: 

 ∑
=

=
k

i
ii xfy

1
)(ˆ β  (11) 

where the coefficients β are still calculated by the ordinary least squares method (equation (5)); fi(x) is a basis 
function which generally can be defined as a product of the input variables each raised to some order: 
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where rij is the order of the j-th variable in the i-th basis function (a non-negative integer). It should be noted that 
when all rj’s of a basis function become equal to 0, the basis function becomes equal to 1, ergo it is the intercept 
term. 

The matrix r completely defines all the basis functions in the model – each row corresponds to one basis function 
with all of its orders. Construction of the model is carried out in an iterative manner directly with the matrix r using 
five simple so-called model refinement operators which allow adding, copying, modifying, and deleting the rows of 
r, i.e., adding, copying, modifying, and deleting the basis functions of the model19,20. As a search procedure a 
modification of the Sequential Floating Forward Selection21 algorithm is employed while models are evaluated 
using the Corrected Akaike’s Information Criterion22. Additionally, in order to lower the model building issues of 
selection bias and selection instability a technique of model averaging (also called ensembling or combining) is 
carried out20. 

E. Metamodel evaluation 
To evaluate the metamodels, 5-fold cross-validation technique16 has been used where the full data set is divided 

in five equally-sized subsets. In each of the five cross-validation iterations four of the subsets are used for 
metamodel building and one subset is used as an independent test set for evaluation of the metamodel. As the 
metamodel accuracy measure the Relative Root Mean Square Error has been used: 
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where y  is the mean value of all y values in the test sample. It should be noted that RRMSE and STD are calculated 
using strictly only the test sample and averaged over all the cross-validation runs. 

V. Metamodeling results 
As structural response parameters the following entities have been taken: global deflection of the deck panel u, 

the relative deflection ratio between the deck length and the plate deflection Δu, the maximum equivalent stress at 
the upper plate and the stiffeners σtop , σstift and the maximum shear stresses in stiffeners τ. A total of 500 sampling 
points have been generated and a cross-validation procedure together with the RRMSE measure has been carried out 
comparing the different metamodeling techniques. Two loading scenarios have been selected for metamodeling: the 
concentrated three-point bending load case and uniformly distributed load case with simple support boundary 
conditions. The obtained results are summarized in Tables 3 and 4. 

 

 
The conventional 2nd order polynomials, which are mostly associated with engineering problems of the response 

surface methodology, gave the worst approximation results for almost all the response values. It has been noted that 
locally weighted polynomials of the 2nd order considerably increased the predictive performance. As overall 
observation could be stated that, by increasing the order of polynomials, the approximation performance rose, 
however the higher was the order the smaller was the improvement of the locally weighted polynomials over the 
global ones. Additionally, it should be expected that decreasing the number of the sampling points would lead the 
full polynomials of higher orders to overfitting the data thus rapidly reducing their predictive performance. 

The best results were obtained using the ABFC approach, leaving the MARS technique as the second best. One 
can conclude that, although using higher order global polynomials or locally weighted polynomials can improve the 
predictive performance, an elaborated adaptive search for partial polynomials or regression splines has capabilities 
to provide an even further performance boost. 

Additionally, it has been investigated how rapidly the performance of the metamodeling methods would 
deteriorate while decreasing the number of sample points. For the case of concentrated three-point bending load 
additional results for 200 sample points instead of 500 were obtained. The results are summarized in Table 5. 

With the reduced number of sample points the 4th order polynomials became impossible to use because the 
number of their basis functions was now higher than the number of the sample points. For all metamodels a 
reduction in their predictive performance has been observed, however the most rapid performance deterioration was 
for MARS metamodels. The best results were still obtained using the ABFC approach. Apparently, compared to the 
other techniques, partial polynomials are relatively more efficient than others when a small dataset of sample points 
is used while reducing the number of basis functions in a polynomial model. 

Table 4. Cross-validation RRMSE errors of different metamodels built using 500 sample points in the case 
of uniformly distributed load 

Parametric polynomial approximations Locally weighted 
polynomials Metamodels 

2nd 3rd 4th ABFC 2nd 3rd 4th 
MARS 

Panel deflection, u 34.23 18.04 11.54 1.07 23.15 14.15 10.47 5.26
Comparative deflection, Δu 45.26 32.81 29.44 13.27 31.83 27.83 27.88 19.58

Max_stresses, σtop 16.94 6.36 5.59 3.56 7.88 5.28 5.52 4.94
Max_stresses, σstif 16.18 7.61 4.59 1.67 10.01 5.97 3.84 3.54

Max_shear_stresses, τ 10.36 8.09 11.38 7.32 8.30 8.05 11.56 11.28

Table 3. Cross-validation RRMSE errors of different metamodels built using 500 sample points in the case 
of concentrated three-point bending load 

Parametric polynomial approximations Locally weighted 
polynomials Metamodels 

2nd 3rd 4th ABFC 2nd 3rd 4th 
MARS 

Panel deflection, u 27.89 13.04 6.71 0.81 16.75 9.90 6.12 3.00
Comparative deflection, Δu 14.09 3.95 1.57 0.45 7.09 2.74 1.47 2.03

Max_stresses, σtop 14.36 4.74 2.32 1.33 7.35 3.69 2.29 2.03
Max_stresses, σstif 12.56 5.45 3.93 3.00 7.28 4.55 4.03 3.92

Max_shear_stresses, τ 10.32 7.42 7.73 2.18 7.91 7.11 7.71 5.82
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Moreover, three-dimensional graphical validations of the developed metamodels for the deck panel deflection u 

versus the panel length L and the panel height h parameters in the case of concentrated three-point bending load with 
500 sample points were carried out as presented in Figure 5. By graphical validation one can easily identify that low 
order global polynomial approximations at the maximum height and the minimum length behave differently than 
expected. In particular the second order and to a lesser extent also the forth order polynomial surface plots show a 
decrease of stiffness when increasing the panel height. On the other hand, the third order polynomial function shows 
non-negative deflection at the boundaries, which would indicate bending against gravity. The locally weighted 
polynomials reduce the unwanted behavior. However, by zooming in at the region of the maximum height and the 
minimum length, the surface plots reveal that the higher is the order of the locally weighted polynomials the more 
they behave like global polynomials resulting again in the unwanted behavior. 

 

 

 

 
Figure 5. Graphical validation of surrogate models for panel deflection in the case of concentrated load. 
Full global polynomials of 2nd (a), 3rd (b), and 4th (c) order; locally weighted polynomials of 2nd (d), 3rd (e), and 
4th (f) order; MARS (g); ABFC (h) 

Table 5. Cross-validation RRMSE errors of different metamodels built using 200 sample points in the case 
of concentrated three-point bending load 

Parametric polynomial approximations Locally weighted 
polynomials Metamodels 

2nd 3rd 4th ABFC 2nd 3rd 4th 
MARS 

Panel deflection, u 25.82 14.51 N/A 1.87 16.92 13.68 N/A 7.51
Comparative deflection, Δu 16.48 5.90 N/A 1.38 11.50 5.22 N/A 4.69

Max_stresses, σtop 14.07 5.73 N/A 1.79 9.08 5.55 N/A 3.64
Max_stresses, σstif 12.18 6.03 N/A 4.04 8.80 6.06 N/A 6.91

Max_shear_stresses, τ 11.60 10.56 N/A 7.35 10.81 10.68 N/A 8.39

a) b) c) 

d) f) 

g) h) 

e) 
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Overall, the low-order locally weighted polynomial approximation, MARS, and the ABFC gave the best overall 
perspective of structural behavior by creating a plateau-like surface for the height of stiffened panel designs. It 
seems that here for an optimization procedure all the three methods can be used with some confidence however for 
what-if analysis the ABFC would be the most accurate. 

VI. Conclusion 
 
The comparison study between parametric and non-parametric metamodels has been elaborated for design of 

pultruded GFRP deck structures under the bending load. Two loading scenarios have been selected to investigate the 
metamodeling efficiency and have been validated with physical experiments. It has been concluded that the partial 
polynomials and MARS are capable to improve the prediction accuracy compared to conventional 2nd order 
polynomials, which frequently are associated with engineering problems of the response surface methodology. In 
particular, the bending deflection responses could be improved by an order of magnitude compared to the 2nd order 
polynomials. In contrary, the improvement in approximation prediction for equivalent stresses and shear stresses are 
less efficient. Elaborated metamodels have the capability to be used in implementation of optimum design 
methodology for the bended deck structures. 
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