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Abstract 
 
The increasing demand for location-based services inside buildings has made indoor positioning a significant 
research topic. This study deals with indoor positioning using the Wireless Ethernet IEEE 802.11 (Wi-Fi) 
standard that has a distinct advantage of low cost over other indoor wireless technologies. Most of the proposed 
Wi-Fi indoor positioning systems use either proximity detection via radio signal propagation models or location 
fingerprinting techniques, the latter being usually more accurate. The aim of this study is to examine several 
aspects of Wi-Fi location fingerprinting based indoor positioning that could enhance the positioning accuracy, 
without demanding a larger radio map with additional signal strength measurements in more locations, namely 
making use of weakly-sensed access points, making use of the different available Wi-Fi frequency bands, using 
device’s orientation information provided by a built-in digital compass, and augmenting the radio map using 
Locally Weighted Regression. 
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1. Introduction 
 
The increasing demand for location-based services inside buildings has made indoor positioning a significant 
research topic. The applications of indoor positioning are many, for instance, indoor navigation for people or 
robots, inventory tracking, locating patients in a hospital, guiding blind people, tracking small children or elderly 
individuals, location-based advertising, ambient intelligence etc. 
 
Although the Global Positioning System is the most popular outdoor positioning system, its signals are easily 
blocked by most construction materials making it useless for indoor positioning. This study deals with indoor 
positioning using the Wireless Ethernet IEEE 802.11 (Wi-Fi) standard that has a distinct advantage of low cost 
over other indoor wireless technologies – it has relatively cheap equipment and in many areas usually a Wi-Fi 
network already exists as a part of the communication infrastructure avoiding expensive and time-consuming 
infrastructure deployment. 
 
Although Wi-Fi has not been designed for positioning, its radio signals can be used for location estimation by 
exploiting the Received Signal Strength (RSS) values measured in any off-the-shelf mobile device equipped with 
Wi-Fi facilities – and no additional special-purpose hardware is required. Such a positioning system can be 
relatively easily implemented for notebook computers, Personal Digital Assistants, smartphones, and other 
Wi-Fi enabled mobile devices. 
 
Most of the proposed Wi-Fi indoor positioning systems use either proximity detection via radio signal 
propagation models (Thomas and Ros, 2005; Widyawan et al., 2007; Yim et al., 2010) or location fingerprinting 
techniques (Badawy and Hasan, 2007; Brunato and Battiti, 2005; Ferris et al., 2006; Honkavirta et al., 2009; 
Hossain et al., 2007; Liao and Kao, 2008; Yim, 2008; Yim et al., 2010). Deriving an accurate propagation model 
for each Wi-Fi access point (AP) in a real-world indoor environment is extremely complex and therefore usually 
results in a relatively poor positioning accuracy (Widyawan et al., 2007; Yim et al., 2010). On the other hand, 
location fingerprinting techniques use empirical data to approximate a location. First, a so-called radio map is 
constructed by measuring RSS at a number of known locations – calibration points. The location of the user is 
then determined by comparing the obtained RSS values to a radio map. This provides accurate positioning even 
in very complex environments while the modelling of the complex signal propagation is avoided. In addition, the 
fingerprinting techniques usually do not require knowing exact locations of APs. 
 
An early example of a positioning system that uses fingerprinting is RADAR (Bahl and Padmanabhan, 2000). In 
RADAR, user’s location is determined by finding a known fingerprint that is most similar to the actual RSS 
readings. Since then, many studies have been conducted that perform location estimation from a radio map 
employing Nearest Neighbours (Honkavirta et al., 2009; Lin and Lin, 2005; Yim et al., 2010), Artificial Neural 
Networks (Battiti et al., 2002; Derr and Manic, 2008; Lin and Lin, 2005), Support Vector Machines (Brunato 
and Battiti, 2005), Decision Trees (Badawy and Hasan, 2007; Yim, 2008), Bayesian techniques (Honkavirta et 
al., 2009; Liao and Kao, 2008; Madigan et al., 2005), or other techniques (Ferris et al., 2006; Honkavirta et al., 



2009; Widyawan et al., 2007; Yim et al., 2010). In majority of these studies the Nearest Neighbours technique, 
in addition to its simplicity, turned out to be among the most accurate ones. 
 
The aim of this study is to examine several aspects of Wi-Fi location fingerprinting based indoor positioning that 
could enhance the positioning accuracy without demanding a larger radio map with additional RSS 
measurements in more locations. 
 
Making use of weakly-sensed APs: It is considered to make use of (in many studies frequently ignored) weakly-
sensed APs located further away, on other floors, and even in nearby buildings. It is demonstrated that the weak 
APs can provide additional information for at least a slightly more accurate positioning. Furthermore, also a 
situation, when in the entire building there would be no APs, is considered – the positioning system may use 
signal strength information from only those APs of the other buildings nearby. 
 
Making use of the two different Wi-Fi frequency bands: The use of either or both 2.4 GHz and 5 GHz Wi-Fi 
bands using IEEE 802.11b/g and IEEE 802.11a standards is examined. 
 
Making use of device’s orientation information: In studies (Bahl and Padmanabhan, 2000; Honkavirta et al., 
2009; Kaemarungsi and Krishnamurthy, 2004; Liao and Kao, 2008), it is argued that the mobile device’s 
orientation information can have a significant effect on the RSS values and therefore on estimated location. This 
study examines the opportunity to improve positioning accuracy using device’s orientation information provided 
by a digital compass – a piece of hardware that is built-in in many newest handheld devices. 
 
Augmenting the radio map: A method is proposed for augmenting the radio map with additional fingerprints 
predicted by Locally Weighted Regression (LWR), with locality of interpolation optimized individually for each 
AP. It is shown that the augmented radio map can provide higher positioning accuracy without additional RSS 
measurements, especially if the original radio map is sparse. 
 
In many existing studies, to perform the positioning experiments, the (usually) three to six APs are carefully 
distributed across the area of interest specifically for the purposes of the experiments. Therefore, it should be 
noted that in the experiments of this study no additional APs were deployed and no existing APs were moved – 
the experiments are performed using an already existing infrastructure with APs that have been deployed for 
maximum Wi-Fi internet availability. 
 
The remainder of this paper is organized as follows: Section 2 outlines location fingerprinting, describes 
Weighted k-Nearest Neighbours algorithm, sketches the idea of the usage of device’s orientation information, 
and proposes radio map augmentation using LWR. Section 3 describes the performed experiments and presents 
experimental results and findings. Finally, Section 4 concludes the paper. 
 
2. Methodology 
 
2.1. Location fingerprinting 
 
Location fingerprinting based positioning systems usually work in two phases (see Fig. 1): calibration phase 
(also called offline phase) and working phase (also called online phase or run-time phase). In the calibration 
phase, a mobile device is used to measure RSS values (in dBm) from several APs at the chosen calibration points 
in the area of interest. Each of the n measurements becomes a part of the radio map and is a tuple ( )ii rq ,  

ni ,...,2,1=  where ( )iii yx ,=q  are the geographical coordinates of the ith location and ( )imiii rrr ,..., 21=r  are the 
m RSS values from m APs at that location. Usually, an average of several samples recorded per location is stored. 
 

 
Figure 1. The two phases of location fingerprinting 
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In the working phase, a mobile device measures the RSS values in an unknown location and applies a location 
estimation algorithm to estimate its current location using the previously created radio map. As indoor 
environments have unique signal propagation characteristics, it can be assumed that each location can be 
associated with a unique combination of RSS values. 
 
2.2. Weighted k-Nearest Neighbours 
 
A general Weighted k-Nearest Neighbours (WKNN) algorithm for location fingerprinting can be described as a 
two step process. First, find within the radio map the k indices kiii ,...,, 21  whose 

kiii rrr ,...,,
21

 values are nearest 
(according to Euclidean distance in the signal space) to the given vector r measured at the unknown location. In 
the second step, calculate the estimated location q (for each coordinate separately) as an average weighted by the 
inverse of the RSS distances: 
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where all weights are nonnegative 1),( −= rr

jij dw  and d is the Euclidean distance between the m-vectors. Note 
that there is a special case when the distance is zero; then as the estimated location just the one with the zero 
distance is taken without fully computing (1). The reasoning behind this algorithm is that the calibration point 
with the shortest distance in signal space also has the shortest distance in physical space, and as such acts as a 
proper location estimate. 
 
WKNN has one tuning parameter, the number of nearest neighbours considered k, which is used to control the 
locality of the location calculation. When 1=k , the algorithm acts as a simple look-up table. For larger values, 
the location can also be estimated to be somewhere in-between the calibration points. Li et al. (2006) 
recommends using 1=k  only if the density of the radio map is high. However, k should also not be too large as 
then the location estimates will be too much influenced by calibration points far away. In this study the number 
is fixed experimentally to 2=k . 
 
2.3. Making use of device’s orientation information 
 
Honkavirta et al. (2009) in their study showed that the positioning accuracy significantly benefit from varying 
rotation of the measuring device during the calibration phase. This is mostly because of the radio irregularity 
caused by the direction of a mobile device’s antenna, existence of some reflector of the wireless signal, or user’s 
body due to the high proportion of water in human body absorbing wireless signals (Kaemarungsi and 
Krishnamurthy, 2004; Liao and Kao, 2008). Device’s rotation can level out or equalize the impact of its 
orientation to measure more reliable fingerprint compared to the fingerprint that is measured only to one 
direction. 
 
In (Liao and Kao, 2008), during the calibration phase RSS values were recorded in four different orientations 
while in the working phase device’s orientation was estimated and employed for a more accurate positioning. It 
was shown that, when the user movement consists of mostly straight lines, positioning accuracy can be improved. 
However, if the orientation of the device is estimated incorrectly, the positioning accuracy decreases. 
 
Theoretically, the availability of orientation information from a built-in digital compass can improve the 
positioning accuracy by using radio map data of only the specific orientation. This study examines the potential 
to improve positioning accuracy using device’s orientation information provided by a digital compass. 
 
2.4. Augmenting the radio map 
 
Collecting large numbers of fingerprints in the calibration phase is labour-intensive, which makes a large-scale 
deployment of accurate indoor positioning non-trivial. Therefore, a variety of techniques have been proposed in 
order to generate synthetic calibration points with predicted RSS values for adding to the radio map, allowing to 
collect only a limited number of field measurements. Many proposed techniques (Hossain et al., 2007; Pechac 
and Klepal, 2001; Widyawan et al., 2007) predict the RSS values using a radio signal propagation model 
requiring knowing exact locations of all used APs or even complete plans of the whole deployment area with 
precise locations of all walls. And even with this information available, the derived propagation models may be 
inadequate for the environment and therefore may not bring the desired positioning accuracy. A number of other 



proposed techniques do not rely on any propagation model, instead the RSS values are predicted via local 
interpolation of the original calibration points, approximating the behaviour of the radio signal (Ferris et al., 
2006; Li et al., 2006). 
 
This study adopts the latter approach and proposes generating synthetic calibration points using LWR with 
locality of interpolation optimized individually for each AP. The technique does not require knowing locations 
of neither APs nor walls. The augmentation of the radio map is done using only the original calibration points. 
This allows performing augmentation also when the available information on the environment is incomplete, e.g. 
when locations of some APs are unknown, and without additional software for environment layout analysis. 
 
LWR (Cleveland and Devlin, 1988; Atkeson et al., 1997) is designed to address situations in which the models 
of global behaviour do not perform well or cannot be effectively applied without undue effort. The LWR 
interpolation is carried out by point-wise fitting of low-degree polynomials to localized subsets of the data. The 
advantage of this method is that it is not required to specify a global function of the data. 
 
The assumption of the LWR is that near the query point (i.e. the to-be-added synthetic calibration point) the 
approximated value changes smoothly and can be approximated using a low-degree polynomial. The coefficients 
of the polynomial are calculated using the weighted least-squares method giving the largest weights to the 
nearest (according to the Euclidean distance) calibration points and the smallest weights to the farthest 
calibration points. 
 
Given a regression model 
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where j is the index of AP for which the interpolation is done, w is a weight function, and ),( yxq =  is the query 
point (nearest neighbours of which will get the largest weights). The weight function w depends on the distance 
(in a scaled space) between the point of interest q and a calibration point qi. In this study, a Gaussian weight 
function is used: 
 
 ),exp(),( αμ−=iqw q  (4) 
 
where α  is a coefficient that controls the locality of the interpolation and μ  is scaled distance from the query 
point to the ith calibration point: 
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where d is Euclidean distance and ∗q  is the farthest calibration point from the query point q so that 1=μ  when 

iq q=∗ . Consequently, for each query point, the closer calibration points contribute more heavily in formulating 
regression equation. 
 
The locality of the interpolation is controlled by varying the value of α . The larger its value, the more local is 
the interpolation; for 0=α , the local model transforms into a global model. To automatically find the ‘best’ 
value of α  for each AP, a simple search algorithm is performed in each step employing Leave-One-Out 
Cross-Validation (LOOCV) for estimation of LWR’s predictive performance. The algorithm starts with 0=α  
and gradually increments it by 10, in each step performing LOOCV. The search is stopped after the predictive 
performance could not be improved for 5 steps in a row. 
 
LOOCV involves n iterations where each time 1−n  calibration points from the radio map are used as training 
data, and the remaining one point is used as validation data (acting as the query point in LWR). This is repeated 



so that each calibration point is used exactly once as the validation data. LOOCV estimates the predictive 
performance by averaging the individual squared errors of RSS prediction from the n iterations. 
 
Once the ‘best’ α  values for each AP are known, the predicted RSS value at a synthetic point is obtained by 
plugging the two coordinates of a synthetic point and its corresponding three coefficients (computed using (3)) in 
(2). Note that these computations must be performed for each AP and each synthetic point separately. In other 
words, for inferring each synthetic point, a different regression equation is obtained for each of the m APs every 
time. 
 
The Matlab source code of LWR employed in this study is available at http://www.cs.rtu.lv/jekabsons/. 
 
3. Experimental study 
 
3.1. Experimental testbed and data collection procedure 
 
The experiments were performed on the fifth floor of a five-storey building of the Faculty of Computer Science 
and Information Technology, Riga Technical University. The area of the testbed is approximately 860 m2, and 
includes eight classrooms, four offices, and the main hallway. 
 
Fig. 2 displays the layout of the floor where the experiment was performed. The area has five APs installed 
which have been deployed for maximum Wi-Fi internet availability and can be sensed in at least a third of the 
area. The largest left-out part of the fifth floor (upwards in the figure) has some additional APs that can be barely 
sensed from some nearest locations. Furthermore, some APs from the fourth and even third floors can also be 
sensed in some small areas. This sums up in locally-situated 14 APs. Most of the local APs are Enterasys devices 
RBT-1002 and RBT-4102 operating in both IEEE 802.11a and IEEE 802.11b/g modes at the same time, 
allowing getting RSS readings for both 2.4 GHz and 5 GHz Wi-Fi frequency bands. Additionally, there are a 
total of 43 APs in the nearest other buildings that can be sensed in at least one small location. Note that no 
additional APs were deployed and no existing APs were moved – the experiments were performed using an 
already existing infrastructure. The measurements were done mostly in working hours with people walking 
around and the Wi-Fi internet being used. 
 
The RSS measurements were collected by a human operator using a PC notebook with internal wireless card. 
The notebook was used for both calibration and working phase. A total of 82 calibration points are defined (see 
Fig. 2). In the classrooms, the points were placed near the walls and corners, as the walls are responsible for fast 
drops of signal strength while in the free space the signal strength drops much slower, especially further away 
from an AP. On average, the distance from one calibration point to the nearest other point is 3.7 m within the 
same room and 2.6 m when also the points from other rooms are considered. The number of APs that could be 
sensed from a location ranges from 2 to 13 with average of 7. 
 

 
Figure 2. Layout of the testbed environment with calibration points and synthetic points 

 
To be able to test the usefulness of device’s orientation information, for each calibration point the RSS readings 
were collected in four directions (facing north, east, south, and west), while for each direction a total of 30 RSS 
samples were collected over a time span of 30 seconds. The readings are then averaged for each direction 



separately as well as for all the directions combined, resulting in five different average RSS values, each for a 
separate radio map. 
 
Finally, a test set of 68 points was created (see Fig. 3). The placement of the testing points mimics a person 
walking in a route through five classrooms, one office, and the hallway. The route is started at one point and 
finally ended at the very same point, visiting 34 different locations where each location is visited two times, each 
time facing a different direction. The measurement process, apart from that it is performed for only two 
orientations, is the same as for the calibration points. 
 
The averaged RSS values range from -99 dBm (used when the AP is not present) to about -33 dBm in close 
proximity to an AP. The outcome of the measurement session can be downloaded at 
http://www.cs.rtu.lv/jekabsons/. 
 
3.2. Experimental results 
 
Table 1 summarizes the positioning errors for the experiments. 
 
Making use of weakly-sensed APs: The results suggest that indeed the positioning accuracy can be at least 
slightly improved if the list of the used APs consists of not only the strongest APs (average positioning error of 
2.37 m) but also the weakly-sensed APs located further away, on other floors, and even in nearby buildings as 
well (average positioning error of 2.10 m). 
 
Additionally, an interesting result is that, if in the entire building there would be no APs and the positioning 
system could use signal strength information from the ‘outside’ APs only – those of the other buildings nearby, 
the average positioning error would still be a decent 7.14 m. This suggests that such a positioning system could 
still be useful, especially if used together with some supplementary positioning or tracking technology while 
walking through hallways in the middle of the building (where, in this experiment, the positioning error is the 
largest). 
 

Table 1 
Test set error (in meters) distribution: mean, median, and percentiles 

 Mean Median 75th 90th 95th 
5 strongest local APs      
2.4 GHz 2.56 2.35 3.60 4.64 5.56 
Both freq. 2.28 1.87 3.40 4.24 5.36 
Both freq. + orientation info. 2.45 1.88 3.76 4.70 5.50 
Both freq. + LWR 2.19 1.95 3.03 4.31 5.60 
All local APs (14)      
2.4 GHz 2.33 2.16 3.17 3.99 5.12 
Both freq. 2.10 1.67 3.12 4.18 5.41 
Both freq. + orientation info. 2.40 1.61 3.26 5.03 7.23 
Both freq. + LWR 1.94 1.52 2.55 4.00 5.21 
All sensed APs (57)      
2.4 GHz 2.44 2.32 3.58 4.62 5.10 
Both freq. 2.02 1.62 3.04 4.22 4.52 
Both freq. + orientation info. 2.11 1.71 3.10 4.08 4.96 
Both freq. + LWR 1.82 1.56 2.35 3.69 4.58 
Only the ‘outside’ APs (43) 7.14 6.51 10.02 13.64 14.55 
Reduced radio map, both freq.      
5 strongest local APs 3.48 3.48 4.75 5.99 6.95 
5 strongest local APs + LWR 3.22 3.05 4.47 5.33 6.52 
All local APs 3.31 3.31 4.61 5.55 6.53 
All local APs  + LWR 2.83 2.56 3.88 5.03 5.76 
All sensed APs 3.43 3.30 4.81 5.87 7.21 
All sensed APs + LWR 3.00 2.42 3.99 5.79 7.40 

 
Making use of the two different Wi-Fi frequency bands: Signals from eight of the local APs were strong enough 
for the measuring device to be able to detect them in both bands, 2.4 GHz (IEEE 802.11b/g) as well as 5 GHz 
(IEEE 802.11a). It turned out that, in addition to 2.4 GHz RSS, using also the 5 GHz RSS (as if they would come 
from additional eight APs) always increased the average positioning accuracy by at least 10%. Apparently, 



despite the sharply dropping 5 GHz signal strength, the RSS values are still useful for extracting additional 
information for positioning, even if only near the APs. 
 
Making use of device’s orientation information: For this experiment, four different radio maps where created – 
one for each orientation. The location estimation for each testing point was done using that radio map 
corresponding orientation of which is the nearest to the actual orientation of the measuring device at the time of 
measurement. 
 
While theoretically the availability of orientation information could increase the positioning accuracy, in practice 
there was no improvement. The reason for this could be the evident signal strength fluctuations, i.e. the noise in 
the data could be higher than the useful orientation-specific information. Nevertheless, it should be noted that the 
positioning accuracy significantly benefited from the RSS readings averaged over all four orientations, for 
example, while using all local APs and both frequency bands, the positioning error decreased from 2.85 m, when 
RSS information from only the north orientation was used, to 2.10 m, when all four orientations were used. 
 
Augmenting the radio map: For this experiment, the locations of the synthetic points were chosen so that the 
points in the radio map would retain the uniform distribution. The chosen locations are shown in Fig. 2. Results 
in Table 1 suggest that there is at least a slight improvement. Fig. 3 shows the location estimation results, where 
a triangle represents the true location and its corresponding two crosses represent the estimated locations for the 
two opposite orientations. Note that the estimated locations almost always fall in the correct room providing a 
near 100% accuracy on the room-level granularity (here, an unaugmented radio map provides similar behaviour). 
 
The same experiment was also performed with a reduced radio map formed from the original one by taking only 
the (one to three) central calibration points for classrooms, one point for each office, and every second point for 
hallway – a total of 25 calibration points. In the augmentation process, the synthetic calibration points were 
generated at all the left-out calibration point locations as well. This time the augmented radio map outperforms 
the unaugmented one more significantly (see Fig. 4a). It can be seen that the gain using an interpolation 
technique becomes more significant when the radio map is sparse. This also agrees with the results of prior 
studies (Hossain et al., 2007). The thing to emphasise is that with the significant reduction in the number of 
measured calibration points, the positioning error increased only to 2.83 m. This means that, if an environment 
has changed, only a small number of new measurements is needed to quickly generate an updated radio map and 
get a reasonably accurate positioning. 
 
Finally, Fig. 4b presents the results of an additional experiment where the impact of varying the number of used 
APs was studied with more detail and without regarding the origin of an AP. The list of all APs was sorted by 
their overall RSS variance in the full radio map and for each number of used APs only those with the largest 
variance were used. As expected, the positioning error is not a linear function of the number of APs: the 
decreasing rate of positioning error gradually slows down and at some threshold it is evident that only little 
benefit is achieved by further increasing the number of APs. Here, the best results are mostly achieved using 
about 20 APs. However, the fluctuations of the curves suggest that a better criterion for sorting the APs or a 
better algorithm for finding the best subsets of the APs could be used delivering smaller subsets with the same or 
even slightly better positioning accuracy. 
 

 
Figure 3. Testing points and their corresponding estimated locations 

 



  
Figure 4. Positioning performance: a) with the reduced radio map; b) with different numbers of APs 

 
4. Conclusion 
 
This paper examined several aspects of Wi-Fi location fingerprinting based indoor positioning that could 
enhance the positioning accuracy. Based on the experimental findings, the following conclusions can be drawn. 
 
It was observed that a positioning system can benefit from the availability of additional weakly-sensed APs as 
well as APs working in 5 GHz frequency band (using IEEE 802.11a/n). RSS readings from these APs gave a 
notable improvement in positioning accuracy – the average positioning error dropped from 2.56 m to 2.02 m. In 
fact, in this study, using exclusively the APs from the other buildings nearby, the positioning error was still a 
decent 7.14 m. 
 
Nevertheless, it must be noted that the benefit from adding more and more weakly-sensed APs quickly decreases 
and after a certain number of APs, the accuracy actually can deteriorate. This is especially true for sparse radio 
maps. One of the future work directions here could be consideration of some kind of automatic subset selection 
technique to filter-out the irrelevant APs. While this may not bring much additional accuracy, at least the size of 
RSS fingerprint database could be significantly reduced. 
 
In this study, the availability of orientation information could not increase the positioning accuracy. The reason 
for this could be the evident signal strength fluctuations. However, as this result appears to contradict with some 
other studies, it should be investigated more extensively with different experimental setups. 
 
The results from experiments with LWR show that the largest potential improvement in positioning accuracy is 
when the radio map is sparse. This makes the technique especially suitable for larger environments in order to 
shorten the time required for measurements in the calibration phase and still achieve a reasonable positioning 
accuracy. 
 
References 
 
1. Atkeson C.G., Moore A.W. and Schaal S. (1997) Locally weighted learning. Artificial Intelligence Review, 

11, pp.11-73. 
2. Badawy O.M. and Hasan M. (2007) Decision tree approach to estimate user location in WLAN based on 

location fingerprinting. In: Proceedings of 24th National Radio Science Conference, Ain Shams Univ., 
Egypt, pp.1-10. 

3. Bahl P. and Padmanabhan V.N. (2000) RADAR: an in-building RF-based user location and tracking system. 
In: Proceedings of the IEEE 19th Annual Joint Conference of the IEEE Computer and Communications 
Societies (INFOCOM 2000), pp.775-784. 

4. Battiti R., Villani A. and Le Nhat T. (2002) Neural network models for intelligent networks: deriving the 
location from signal patterns. In: Proceedings of AINS2002, UCLA 

5. Brunato M. and Battiti R. (2005) Statistical learning theory for location fingerprinting in wireless LANs. 
Computer Networks and ISDN Systems, 47(6), Elsevier, 2005, pp.825-845. 

6. Cleveland W. and Devlin S. (1988) Locally Weighted Regression: An Approach to Regression Analysis by 
Local Fitting. American Statistical Association, 83, pp.596-610. 

7. Derr K. and Manic M. (2008) Wireless based object tracking based on neural networks. In: Proceedings of 
3rd IEEE Conference on Industrial Electronics and Applications (ICIEA’08), pp.308-313. 

a) b) 



8. Ferris B., Haehnel D. and Fox D. (2006) Gaussian Processes for Signal Strength-Based Location Estimation. 
In: Proceedings of Robotics: Science and Systems 

9. Hossain A.K.M.M., Van H.N., Jin Y. and Soh W.-S. (2007) Indoor Localization Using Multiple Wireless 
Technologies. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems 
(MASS’07), pp.1-8. 

10. Honkavirta V., Perala T., Ali-Loytty S. and Piche R. (2009) A Comparative Survey of WLAN Location 
Fingerprinting Methods. In: Proceedings of the 6th Workshop on Positioning, Navigation, and 
Communication 2009 (WPNC’09), pp.243-251. 

11. Kaemarungsi K. and Krishnamurthy P. (2004) Properties of indoor received signal strength for WLAN 
location fingerprinting. In: MobiQuitous’04: Proceedings of the 1st Annual International Conference on 
Mobile and Ubiquitous Systems: Networking and Services, pp.14-23. 

12. Li B., Salter J., Dempster A.G. and Rizos C. (2006) Indoor positioning techniques based on wireless LAN. 
In: Proceedings of 1st IEEE International Conference on Wireless Broadband & Ultra Wideband 

13. Liao I.-E. and Kao K.-F. (2008) Enhancing the accuracy of WLAN-based location determination systems 
using predicted orientation information. Information Sciences, 178(4), pp.1049-1068. 

14. Lin T.-N. and Lin P.-C. (2005) Performance comparison of indoor positioning techniques based on location 
fingerprinting in wireless networks. In: Proceedings of the 2005 international conference on wireless 
networks, communications and mobile computing, 2, pp.1569-1574. 

15. Madigan D., Einahrawy E., Martin R.P., Ju W., Krishnan P. and Krishnakumar A.S. (2005) Bayesian indoor 
positioning systems. In: Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and 
Communications Societies (INFOCOM 2005), pp.1217-1227. 

16. Pechac P. and Klepal M. (2001) Effective Indoor Propagation Prediction. In: Proceedings of 54th IEEE 
Vehicular Technology Conference VTC, Atlantic City, pp.1-4. 

17. Thomas F. and Ros L. (2005) Revisiting trilateration for robot localization. IEEE Transactions on Robotics, 
21(1), pp.93-101. 

18. Widyawan, Klepal M. and Pesch D. (2007) Influence of Predicted and Measured Fingerprint on the 
Accuracy of RSSI-based Indoor Location Systems. In: Proceedings of 4th Workshop on Positioning, 
Navigation, and Communication 2007 (WPNC’07), pp.145-151. 

19. Yim J. (2008) Introducing a decision tree-based indoor positioning technique. Expert Systems with 
Applications, 34(2), pp.1296-1302. 

20. Yim J., Jeong S., Gwon K. and Joo J. (2010) Improvement of Kalman filters for WLAN based indoor 
tracking. Expert Systems with Applications, 37(1), pp.426-433. 

 


