
ARESLab

Adaptive Regression Splines toolbox for Matlab/Octave

ver. 1.13.0

Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

User's manual

May, 2016

Copyright © 2009-2016 Gints Jekabsons

http://www.cs.rtu.lv/jekabsons/

CONTENTS

1. INTRODUCTION..3

2. AVAILABLE FUNCTIONS..4
2.1. Function aresbuild...4
2.2. Function aresparams...7
2.3. Function aresparams2...12
2.4. Function arespredict...12
2.5. Function arestest...12
2.6. Function arescv...13
2.7. Function arescvc...15
2.8. Function aresplot...16
2.9. Function areseq...17
2.10. Function aresanova...18
2.11. Function aresanovareduce...19
2.12. Function aresinfo...19
2.13. Function aresimp...20
2.14. Function aresdel...22
2.15. Function aresgetknots...22

3. EXAMPLES OF USAGE...23
3.1. Ten-dimensional function with noise..23
3.2. Two-dimensional function without noise..28
3.3. Using Cross-Validation to select the number of basis functions...30
3.4. Parameters useMinSpan and useEndSpan..31

4. REFERENCES...33

2

1. INTRODUCTION

What is ARESLab

ARESLab is a Matlab/Octave toolbox for building piecewise-linear and piecewise-cubic
regression models using the Multivariate Adaptive Regression Splines method (also known as
MARS). (The term “MARS” is a registered trademark and thus not used in the name of the
toolbox.) The author of the MARS method is Jerome Friedman (Friedman, 1991a; Friedman, 1993).

With this toolbox you can build MARS models (hereafter referred to as ARES models) for
single-response and multi-response data, test them on separate test sets or using Cross-Validation,
use the models for prediction, print their equations, perform ANOVA decomposition, assess input
variable importance, as well as plot the models.

This user's manual provides overview of the functions available in the ARESLab.
ARESLab can be downloaded at http://www.cs.rtu.lv/jekabsons/.
The toolbox code is licensed under the GNU GPL ver. 3 or any later version. Some parts of

functions aresbuild and createList were initially derived from ENTOOL toolbox (Merkwirth &
Wichard, 2003) which also falls under the GPL licence.

Details

ARESLab toolbox is written entirely in Matlab/Octave. The MARS method is implemented
according to the Friedman's original papers (Friedman, 1991a; Friedman, 1993). The knot
placement algorithm is implemented very similarly to R package earth (Milborrow, 2016) (see
description of useMinSpan and useEndSpan and remarks in Section 2.2).

One major difference is that the model building is not accelerated using the “fast least-squares
update technique” (Friedman, 1991a). This difference however affects only the speed of the
algorithm execution, not predictive performance of the built models.

The absence of the acceleration means that the code might be slow for large data sets (however,
see description of aresparams on how to make the process faster by using the “Fast MARS”
algorithm and/or setting more conservative values for algorithm parameters). An alternative is to
use the open source package earth for R which is faster and in some aspects more sophisticated,
however currently lacks the ability to create piecewise-cubic models. Yet another open source
alternative is py-earth for Python (Rudy, 2016).

ARESLab does not automatically handle missing data or categorical input variables with more
than two categories. Such categorical variables must be replaced with synthetic binary variables
before using ARESLab, for example using function dummyvar.

Feedback

For any feedback on the toolbox including bug reports feel free to contact me via the email
address given on the title page of this user's manual.

Citing the ARESLab toolbox

Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, 2016, available
at http://www.cs.rtu.lv/jekabsons/

3

http://www.cs.rtu.lv/jekabsons/

2. AVAILABLE FUNCTIONS

ARESLab toolbox provides the following list of functions:
 aresbuild – builds an ARES model;
 aresparams, aresparams2 – creates a structure of ARES configuration parameters for

further use with aresbuild, arescv, and arescvc functions;
 arespredict – makes predictions using ARES model;
 arestest – tests ARES model on a test data set;
 arescv – tests ARES performance using Cross-Validation; has additional built-in

capabilities for finding the “best” number of basis functions for an ARES model;
 arescvc – finds the “best” value for penalty c of the Generalized Cross-Validation criterion

from a set of candidate values using Cross-Validation;
 aresplot – plots ARES model, can visualize knot locations;
 areseq – prints equations of ARES model;
 aresanova – performs ANOVA decomposition;
 aresanovareduce – reduces ARES model according to ANOVA decomposition;
 aresinfo – lists basis functions of ARES model and tries to assess their relevance;
 aresimp – estimates input variable importance;
 aresdel – deletes basis functions from ARES model;
 aresgetknots – gets all knot locations of an ARES model for the specified input variable.

2.1. Function aresbuild

Purpose:
Builds a regression model using the Multivariate Adaptive Regression Splines method.

Call:
[model, time, resultsEval] = aresbuild(Xtr, Ytr, trainParams, weights, keepX,

modelOld, dataEval, verbose)

All the input arguments, except the first two, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr : Xtr is a matrix with rows corresponding to observations and columns

corresponding to input variables. Ytr is either a column vector of response
values or, for multi-response data, a matrix with columns corresponding to
response variables. The structure of the output of this function changes
depending on whether Ytr is a vector or a matrix (see below).
Xtr type must be double. Ytr type must be double or logical (internally
converted to double). Categorical variables in Xtr with more than two
categories must be replaced with synthetic binary variables before using
aresbuild (or any other ARESLab function), for example using function
dummyvar.
For multi-response data, each model will have the same set of basis
functions but different coefficients. The models are built and pruned as
usual but with the Residual Sum of Squares and GCVs summed across all
responses. Since all the models are optimized simultaneously, the results
for each model won't be as good as building the models independently.

4

However, the combined model may be better in other senses, depending on
what you are trying to achieve. For example, it could be useful to select the
set of basis functions that is best across all responses.
It is recommended to pre-scale Xtr values to [0,1] (Friedman, 1991a). This
is because widely different locations and scales for the input variables can
cause instabilities that could affect the quality of the final model. The
MARS method is (except for numerics) invariant to the locations and scales
of the input variables. It is therefore reasonable to perform a transformation
that causes resulting locations and scales to be most favourable from the
point of view of numeric stability (Friedman, 1991a).
For multi-response modelling, it is recommended to pre-scale Ytr values so
that each response variable gets the appropriate weight during model
building. A variable with higher variance will influence the results more
than a variable with lower variance (Milborrow, 2016).

trainParams : A structure of training parameters for the algorithm. If not provided,
default values will be used (see function aresparams for details).

weights : A vector of observation weights. The length of the vector must be the
same as the number of observations in Xtr and Ytr. The weights must be
nonnegative.

keepX : Set to true to retain basis matrix model.X (see description of model.X).
For multi-response modelling, the matrix will be replicated for each model.
(default value = false)

modelOld : If an already built ARES model is provided (whether pruned or not), no
forward phase will be done. Instead the provided model will be taken
directly to the backward phase and pruned. This is useful for fast tuning of
parameters of the backward phase (c, cubic, maxFinalFuncs). Note that
this is also a much faster way of changing a piecewise-linear model into a
piecewise-cubic model or vice versa instead of building a new model from
scratch. This argument is also used by function arescvc for fast selection
of the “best” value for penalty c using Cross-Validation.

dataEval : A structure containing test data in fields X, Y, and, optionally, weights.
Used for getting evaluations for the best candidate models of each size in
the backward pruning phase. For example, arescv uses it to help choosing
a good value for the number of basis functions using Cross-Validation (see
example of usage in Section 3.3). Results are saved in fields R2test and
MSEtest of output argument resultsEval.

verbose : Whether to output additional information to console (default value =
true).

Output:
model : A single ARES model for single-response Ytr or a cell array of ARES

models for multi-response Ytr. A structure defining one model has the
following fields:

coefs : Coefficients vector of the regression model (first, for the intercept term,
and then for all the rest of basis functions). Because of the coefficient for
the intercept term, this vector is one row longer than the others.

knotdims : Cell array of indices of used input variables for knots in each basis
function.

knotsites : Cell array of knot sites for each knot and used input variable in each basis
function. knotdims and knotsites together contain all the information for
locating the knots. If a variable entered a basis function linearly (i.e.,
without hinge function), the knot site for that variable is set to minX.

5

knotdirs : Cell array of directions (-1 or 1) of the hinge functions for each used input
variable in each basis function. If a variable entered a basis function
linearly (i.e., without hinge function), the direction for that variable is set to
2.

parents : Vector of indices of direct parents for each basis function (0 if there is no
direct parent).

trainParams : A structure of training parameters for the algorithm. The values are
updated if chosen automatically. Except useMinSpan, because in automatic
mode it is calculated for each parent basis function separately.

MSE : Mean Squared Error of the model in the training data set.
GCV : Generalized Cross-Validation of the model in the training data set. The

value may also be Inf if model’s effective number of parameters (see Eq.
1) is larger than or equal to the number of observations in the training data.

t1, t2 : For piecewise-cubic models only. Matrix of sites for the additional side
knots on the left and on the right of the central knot.

minX, maxX : Vectors defining the ranges of the input variables determined from the
training data.

isBinary : A vector indicating binary input variables. Determined automatically by
counting unique values for each variable in training data. Therefore a
variable can also be taken as binary by mistake if the data for some reason
included only two values for the variable. Note that whether a variable is
binary does not influence building of the model. This vector is further used
in other functions to simplify printed equations.

X : Basis matrix. Contains values of basis functions applied to Xtr. The
number of columns in X is equal to the number of rows in coefs, i.e., the
first column is for the intercept (all ones) and all the other columns
correspond to the basis functions defined by knotdims, knotsites,
knotdirs, t1, and t2. Each row corresponds to a row in Xtr. Multiplying
X by coefs gives ARES prediction for Ytr. This variable is available only
if argument keepX is set to true.

time : Algorithm execution time (in seconds).
resultsEval : Model evaluation results from the backward pruning phase. Fields R2test

and MSEtest are available only if input argument dataEval is not empty.
The structure has the following fields:

MSE : MSE (Mean Squared Error) in training data for the best candidate model
of each size.

R2 : R2 (Coefficient of Determination) in training data for the best candidate
model of each size.

GCV : GCV (Generalized Cross-Validation) in training data for the best
candidate model of each size. Contains Inf values for models with
effective number of parameters larger than the number of observations in
training data.

R2GCV : R2 estimated by GCV in training data for the best candidate model of each
size. Contains -Inf values for models with effective number of parameters
larger than the number of observations in training data.

R2test : R2 in dataEval test data for the best candidate model of each size.
MSEtest : MSE in dataEval test data for the best candidate model of each size.

Note that if trainParams.cubic = true, values of these fields are
calculated using piecewise-linear models if
trainParams.cubicFastLevel = 2 and piecewise-cubic models if
trainParams.cubicFastLevel < 2.

6

usedVars : Logical matrix showing which input variables were used in the best
candidate model of each size.

Remarks:
The algorithm builds a model in two phases: forward selection and backward deletion. In the

forward phase, the algorithm starts with a model consisting of just the intercept term and iteratively
adds reflected pairs of basis functions giving the largest reduction of training error. The forward
phase is executed until one of the following conditions is met:

1) reached maximum number of basis functions (trainParams.maxFuncs);
2) adding a new basis function changes R2 by less than trainParams.threshold;
3) reached a R2 of 1 – trainParams.threshold or more;
4) the number of coefficients in the model (i.e., the number of basis functions including the

intercept term) has reached the number of data observations n;
5) optionally – model's effective number of parameters has reached the number of data

observations n (see description of trainParams.terminateWhenInfGCV for details).
At the end of the forward phase we have a large model which typically overfits the data, and so

a backward deletion phase is engaged. In the backward phase, the model is simplified by deleting
one least important basis function (i.e., deletion of which reduces training error the least) at a time
until the model has only the intercept term. At the end of the backward phase, from those “best”
models of each size (except models larger than trainParams.maxFinalFuncs), the one with the
lowest Generalized Cross-Validation (GCV) is selected and outputted as the final one.

GCV, as an estimator for prediction Mean Squared Error, for an ARES model is calculated as
follows (Friedman, 1991a; Hastie et al., 2009; Milborrow, 2016):

2

1

n

enp
MSEGCV train , (1)

where MSEtrain is Mean Squared Error of the model in the training data, n is the number of
observations in the training data, and enp is the effective number of parameters:

 2/1 kckenp , (2)
where k is the number of basis functions in the model (including the intercept term) and c is
trainParams.c. Note that 2/1k is the number of hinge function knots, so the formula
penalizes the model not only for its number of basis functions but also for its number of knots. Also
note that in the situation when nenp the GCV value is set to Inf (the model is considered
infinitely bad).

2.2. Function aresparams

Purpose:
Creates configuration for building ARES models. The output structure is for further use with

aresbuild, arescv, and arescvc functions.

Call:
trainParams = aresparams(maxFuncs, c, cubic, cubicFastLevel,

selfInteractions, maxInteractions, threshold, prune, fastK, fastBeta, fastH,
useMinSpan, useEndSpan, maxFinalFuncs, endSpanAdjust, newVarPenalty,
terminateWhenInfGCV, yesInteract, noInteract, allowLinear, forceLinear)

All the input arguments of this function are optional. Empty values are also accepted (the
corresponding defaults will be used).

Parameters prune and maxFinalFuncs are used in the backward pruning phase. Parameters c
and cubic may be used in both phases depending on terminateWhenInfGCV, forceLinear, and
cubicFastLevel. All other parameters are used in the forward phase only.

7

For many applications, it can be expected that the most attention should be paid to the following
parameters: maxFuncs, maxInteractions, cubic, c, and maxFinalFuncs. It is quite possible that
the default values for maxFuncs and maxInteractions will be far from optimal for your data.

But note that, if you are prepared to use Cross-Validation, choosing a good value for
maxFinalFuncs can sometimes release you from being too pedantic about parameters maxFuncs
and c, because you can set large enough maxFuncs and not too large c and follow the example in
Section 3.3.

If you have the necessary domain knowledge, it is recommended to also set yesInteract,
noInteract, allowLinear, and forceLinear.

Input:
maxFuncs : The maximum number of basis functions included in model in the forward

building phase (before pruning in the backward phase). Includes the
intercept term. The recommended value for this parameter is about two
times the expected number of basis functions in the final model (Friedman,
1991a). Note that the algorithm may also not reach this number if some
other termination condition happens first (see remarks on function
aresbuild in Section 2.1). The default value for maxFuncs is -1 in which
case it is calculated automatically using formula
min(200, max(20, 2d)) + 1, where d is the number of input variables
(Milborrow, 2016). This is fairly arbitrary but can be useful for first
experiments.
To enforce an upper bound on the final model size, use maxFinalFuncs
instead. This is because the forward phase can see only one basis function
ahead while the backward pruning phase can choose any of the built basis
functions to include in the final model.

c : Generalized Cross-Validation (GCV) penalty per knot. Larger values for c
will lead to fewer knots (i.e., the final model will have fewer basis
functions). A value of 0 penalizes only terms, not knots (can be useful, e.g.,
with lots of data, low or no noise, and highly structured underlying function
of the data). Generally, the choice of the value for c should greatly depend
on size of the dataset, how structured is the underlying function, and how
high is the noise level, and mildly depend on the thoroughness of the
optimization procedure, i.e., on the parameters maxFuncs,
maxInteractions, and useMinSpan (Friedman, 1991a). Simulation studies
suggest values for c in the range of about 2 to 4 (Friedman, 1991a). The
default value for this parameter is -1 in which case c is chosen
automatically using the following rule: if maxInteractions = 1 (additive
modelling) c = 2, otherwise c = 3. These are the values recommended in
Friedman, 1991a.

cubic : Whether to use piecewise-cubic (true) or piecewise-linear (false) type
of modelling. In general, it is expected that the piecewise-cubic modelling
will give better predictive performance for smoother and less noisy data.
(default value = true)

cubicFastLevel : aresbuild implements three levels of piecewise-cubic modelling. In level
0, cubic modelling for each candidate model is done in both phases of the
method (slow). In level 1, cubic modelling is done only in the backward
phase (much faster). In level 2, cubic modelling is done after both phases,
only for the final model (fastest). The default level is 2 (and it corresponds
to the recommendations in Friedman, 1991a). Levels 0 and 1 may bring
extra accuracy in the situations when, e.g., the underlying function of the

8

data has sharp thresholds that for piecewise-cubic modelling require knot
placements different that those required for piecewise-linear modelling.

selfInteractions : This is experimental feature. The maximum degree of self interactions for
any input variable. It can be set larger than 1 only for piecewise-linear
modelling. The default, and recommended, value = 1, no self interactions.

maxInteractions : The maximum degree of interactions between input variables. Set to 1
(default) for additive modelling (i.e., no interaction terms). For maximal
interactivity between the variables, set the parameter to
d×selfInteractions, where d is the number of input variables – this way
the modelling procedure will have the most freedom building a complex
model. Set to -1, so that aresbuild sets it automatically equal to d
(maximal interactivity when self interactions are not used).

threshold : One of the stopping criteria for the forward phase (see remarks section of
function aresbuild for details). Default value = 1e-4. For noise-free data,
the value may be lowered (e.g., to 1e-6) but setting it to 0 can cause
numerical issues and instability.

prune : Whether to perform model pruning (the backward phase). (default value =
true)

fastK : Parameter (integer) for Fast MARS algorithm (Friedman, 1993, Section
3.0). Maximum number of parent basis functions considered at each step of
the forward phase. Typical values for fastK are 20, 10, 5 (default value =
Inf, i.e., no Fast MARS). With lower fastK values model building is faster
at the expense of some accuracy. Good starting values for exploratory work
are fastK = 20, fastBeta = 1, fastH = 5 (Friedman, 1993). Friedman in
his paper concluded that changing the values of fastK and fastH can have
big effect on training computation times but predictive performance is
largely unaffected over a wide range of their values (Friedman, 1993).

fastBeta : Artificial ageing factor for Fast MARS algorithm (Friedman, 1993,
Section 3.1). Typical value for fastBeta is 1 (default value = 0, i.e., no
artificial ageing). The parameter is ignored if fastK = Inf.

fastH : Parameter (integer) for Fast MARS algorithm (Friedman, 1993, Section
4.0). Number of iterations till next full optimization over all input variables
for each parent basis function. Larger values make the search faster.
Typical values for fastH are 1, 5, 10 (default value = 1, i.e., full
optimization in every iteration). Computational reduction associated with
increasing fastH is most pronounced for data sets with many input
variables and when large fastK is used. There seems to be little gain in
increasing fastH beyond 5 (Friedman, 1993). The parameter is ignored if
fastK = Inf.

useMinSpan : In order to lower the local variance of the estimates, a minimum span is
imposed that makes the method resistant to runs of positive or negative
error values between knots (by taking every useMinSpan-th observation for
knot placement) (Friedman, 1991a). Setting useMinSpan to -1 (default),
enables automatic mode (see remarks below). Setting useMinSpan to 0 or
1, disables the protection so that all the observations are considered for knot
placement (except, see useEndSpan). Setting useMinSpan to > 1, enables
manual tuning of the value. Disabling or lowering useMinSpan may allow
creating a model which is more responsive to local variations in the data
(can be especially useful if the number of data observations is small and
noise is low) however this can also lead to overfitting. For further
information and examples of usage, see Section 3.4.

9

useEndSpan : In order to lower the local variance of the estimates near the ends of data
intervals, a minimum span is imposed that makes the method resistant to
runs of positive or negative error values between extreme knot locations
and the corresponding ends of data intervals (by not allowing to place knots
too near to the ends of the intervals) (Friedman, 1991a). Setting
useEndSpan to -1 (default), enables automatic mode that chooses value for
this parameter depending on the number of input variables (but never lower
than 7). Setting useEndSpan to 0, disables the protection so that all the
observations are considered for knot placement (except, see useMinSpan).
Setting useEndSpan to > 1, enables manual tuning of the value. Disabling
or lowering useEndSpan may allow creating a model which is more
responsive to local variations near the edges of the data (can be especially
useful if the number of data observations is small and noise is low)
however this can also lead to overfitting. For further information and
examples of usage, see remarks below and Section 3.4.

maxFinalFuncs : Maximum number of basis functions (including the intercept term) in the
final pruned model (default value = Inf). Use this (rather than the
maxFuncs parameter) to enforce an upper bound on the final model size.
See Section 3.3 for an example on how to choose value for this parameter
using Cross-Validation.

endSpanAdjust : For basis functions with variable interactions, useEndSpan gets multiplied
by this value. This reduces probability of getting overfitted interaction
terms supported by just a few observations on the boundaries of data
intervals. Still, at least one knot will always be allowed in the middle, even
if endSpanAdjust would prohibit it. Useful values range from 1 to 10.
(default value = 1, i.e., no adjustment)

newVarPenalty : Penalty for adding a new variable to a model in the forward phase. This is
the gamma parameter of Eq. 74 in the original paper (Friedman, 1991a).
The higher is the penalty, the more reluctant will be the forward phase to
add a new variable to the model – it will rather try to use variables already
in the model. This can be useful when some of the variables are highly
collinear. As a result, the final model may be easier to interpret although
usually the built models also will have worse predictive performance.
Useful non-zero values typically range from 0.01 to 0.2 (Milborrow, 2016).
(default value = 0, i.e., no penalty)

terminateWhenInfGCV : Whether to check termination condition, terminating forward phase
when the effective number of parameters of a model reaches the number of
observations in training data, i.e., when GCV for such large models would
be Inf (see remarks section in description of function aresbuild on
GCV). In such cases it could be pointless to continue because larger models
wouldn't be considered as candidates for final model anyway. On the other
hand, some of the added basis functions could still turn out to be useful for
inclusion in final model. Note that the effective number of parameters is not
the same as the number of regression coefficients, except when c = 0 (in
which case enabling terminateWhenInfGCV has no additional effect).
(default value = false)

yesInteract : A matrix indicating pairs of input variables that are allowed to interact
with each other in the ARES model. The matrix must have two columns.
Each row is a pair of indices for the input variables. Default value = [].
Cannot be used together with noInteract.

noInteract : A matrix indicating pairs of input variables that are not allowed to interact
with each other in the ARES model. The matrix must have two columns.

10

Each row is a pair of indices for the input variables. Default value = [].
Cannot be used together with yesInteract.

allowLinear : Whether to allow input variables to enter basis functions linearly, i.e.,
without hinge functions. Such basis functions are added to the model one at
a time, as opposed to basis functions with new hinges that are added two at
a time – one for each hinge of the reflected pair. Set allowLinear to 0
(default), to disallow variables entering linearly, i.e., consider hinge
functions only (except see forceLinear). Set to 1, to allow, and treat error
reduction associated with adding such basis function the same way as for a
pair of basis functions with new hinges. Set to 2, to prefer variables
entering basis functions linearly. This is done by calculating error reduction
of such basis functions using GCV (instead of sum of squared error),
resulting in preference of adding a single basis function instead of two even
when this produces slightly smaller error reduction. Note that the R
package earth (Milborrow, 2016) has options “0” and “1” while py-earth
(Rudy, 2016) has options “0” and “2”.

forceLinear : A vector of indices of input variables that should be forced to enter the
model only linearly, i.e., without hinge functions. This overrides
allowLinear for the listed variables. Note that forceLinear does not say
that a variable must enter the model; only that if it enters, it enters linearly.
Also note that it has nothing to do with whether a variable is allowed to
interact with other variables. Default value = [].

Output:
trainParams : A structure of parameters for further use with aresbuild, arescv, and

arescvc functions containing the provided values (or defaults, if not
provided).

Remarks:
The knot placement algorithm in aresbuild is implemented very similarly to R package earth

(Milborrow, 2016). useMinSpan and useEndSpan are calculated using formulas given in Eq. 45 and
Eq. 43 of the Friedman's original paper (Friedman, 1991a) with alpha = 0.05. For a fixed
dimensionality of the data, useEndSpan always stays the same but useMinSpan is recalculated for
each individual parent basis function used for generating new basis functions. The knots are placed
symmetrically so that there are approximately equal number of skipped observations at each end of
data intervals. For further information and examples of usage, see Section 3.4.

If more speed is required, try using the Fast MARS algorithm by setting fastK parameter to
something other than Inf. Good starting values for exploratory work are fastK = 20, fastBeta = 1,
fastH = 5 (Friedman, 1993). For more information, see descriptions of the mentioned parameters
and the Friedman's paper.

Alternatively, for more speed you can try some of the following options (if they are adequate for
your situation):

1) decreasing maxFuncs (less iterations in forward phase);
2) setting cubicFastLevel = 2 (faster computations; has effect on piecewise-cubic modelling

only);
3) decreasing selfInteractions (less candidate models in forward phase);
4) decreasing maxInteractions (less candidate models in forward phase);
5) enabling terminateWhenInfGCV (sometimes less iterations in forward phase);
6) setting yesInteract or noInteract so that the algorithm doesn't waste it's time on needless

interactions between input variables (less candidate models in forward phase);
7) setting forceLinear for input variables you are sure should enter the model only linearly,

i.e., without hinge functions (less candidate models in forward phase);

11

8) manually increasing useMinSpan and/or useEndSpan (less candidate models in forward
phase);

9) increasing threshold (not recommended; less iterations in forward phase).
Note that decreasing the number of iterations or candidate models may also result in worse final

models.

2.3. Function aresparams2

Purpose:
Creates configuration for building ARES models. The output structure is for further use with

aresbuild, arescv, and arescvc functions.
This function is an alternative to function aresparams for supplying parameters as name/value

pairs.

Call:
trainParams = aresparams2(varargin)

Input:
varargin : Name/value pairs for the parameters. For the list of the names, see

description of function aresparams.

Output:
trainParams : A structure of parameters for further use with aresbuild, arescv, and

arescvc functions containing the provided values (or defaults, if not
provided).

2.4. Function arespredict

Purpose:
Predicts response values for the given query points using ARES model.

Call:
[Yq, BX] = arespredict(model, Xq)

Input:
model : ARES model or, for multi-response modelling, a cell array of ARES

models.
Xq : A matrix of query data points.

Output:
Yq : Either a column vector of predicted response values or, for multi-response

modelling, a matrix with columns corresponding to response variables.
BX : Basis matrix. Contains values of basis functions applied to Xq.

2.5. Function arestest

Purpose:
Tests ARES model on a test data set (Xtst, Ytst).

12

Call:
results = arestest(model, Xtst, Ytst, weights)

Input:
model : ARES model or, for multi-response modelling, a cell array of ARES

models.
Xtst, Ytst : Xtst is a matrix with rows corresponding to testing observations, and

columns corresponding to input variables. Ytst is either a column vector of
response values or, for multi-response data, a matrix with columns
corresponding to response variables.

weights : Optional. A vector of weights for observations. See description of
function aresbuild.

Output:
results : A structure of different error measures calculated on the test data set. For

multi-response data, all error measures are given for each model separately
in a row vector. The structure has the following fields:

MAE : Mean Absolute Error.
MSE : Mean Squared Error.
RMSE : Root Mean Squared Error.
RRMSE : Relative Root Mean Squared Error.
R2 : Coefficient of Determination.

2.6. Function arescv

Purpose:
Tests ARES performance using k-fold Cross-Validation.
The function has additional built-in capabilities for finding the “best” number of basis functions

for the final ARES model (maxFinalFuncs for function aresparams). See example of usage in
Section 3.3 for details.

Call:
[resultsTotal, resultsFolds, resultsPruning] = arescv(X, Y, trainParams, k,

shuffle, nCross, weights, testWithWeights, evalPruning, verbose)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Note that, if argument shuffle is set to true, this function employs random number generator
for which you can set seed before calling the function.

Input:
X, Y : The data. See description of function aresbuild.
trainParams : A structure of training parameters (see function aresparams for details).
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle : Whether to shuffle the order of observations before performing Cross-

Validation. (default value = true)
nCross : How many times to repeat Cross-Validation with different data

partitioning. This can be used to get more stable results. Default value = 1,
i.e., no repetition. Useless if shuffle = false.

13

weights : A vector of weights for observations. See description of function
aresbuild.

testWithWeights : Set to true to use weights vector for both, training and testing. Set to
false to use it for training only. This argument has any effect only when
weights vector is provided. (default value = true)

evalPruning : Whether to evaluate all the candidate models of the pruning phase. If set
to true, the output argument resultsPruning contains the results. See
example of usage in Section 3.3. (default value = false)

verbose : Whether to output additional information to console. (default value =
true)

Output:
resultsTotal : A structure of Cross-Validation results. The results are averaged across

Cross-Validation folds and, in case of multi-response data, also across
multiple models.

resultsFolds : A structure of vectors or matrices (in case of multi-response data) of
results for each Cross-Validation fold. Columns correspond to Cross-
Validation folds. Rows correspond to models.

Both structures have the following fields:
MAE : Mean Absolute Error.
MSE : Mean Squared Error.
RMSE : Root Mean Squared Error.
RRMSE : Relative Root Mean Squared Error. Not reported for Leave-One-Out

Cross-Validation.
R2 : Coefficient of Determination. Not reported for Leave-One-Out Cross-

Validation.
nBasis : Number of basis functions in model (including the intercept term).
nVars : Number of input variables included in model.
maxDeg : Highest degree of variable interactions in model.

resultsPruning : Available only if evalPruning = true. See example of usage in Section
3.3. The structure has the following fields:

GCV : A matrix of GCV values for best candidate models of each size at each
Cross-Validation fold. The number of rows is equal to k×nCross. Column
index corresponds to the number of basis functions in a model.

meanGCV : A vector of mean GCV values for each model size across all Cross-
Validation folds.

nBasisGCV : The number of basis functions (including the intercept term) for which the
mean GCV is minimum.

MSEoof : A matrix of out-of-fold MSE values for best candidate models of each
size at each Cross-Validation fold. The number of rows for this matrix is
equal to k×nCross. Column index corresponds to the number of basis
functions in a model.

meanMSEoof : A vector of mean out-of-fold MSE values for each model size across all
Cross-Validation folds.

nBasisMSEoof : The number of basis functions (including the intercept term) for which the
mean out-of-fold MSE is minimum.

R2GCV : A matrix of R2
GCV (R2 estimated by GCV in training data) values for best

candidate models of each size at each Cross-Validation fold. The number of
rows is equal to k×nCross. Column index corresponds to the number of
basis functions in a model.

14

meanR2GCV : A vector of mean R2
GCV values for each model size across all Cross-

Validation folds.
nBasisR2GCV : The number of basis functions (including the intercept term) for which the

mean R2
GCV is maximum.

R2oof : A matrix of out-of-fold R2 values for best candidate models of each size at
each Cross-Validation fold. The number of rows for this matrix is equal to
k×nCross. Column index corresponds to the number of basis functions in a
model.

meanR2oof : A vector of mean out-of-fold R2 values for each model size across all
Cross-Validation folds.

nBasisR2oof : The number of basis functions (including the intercept term) for which the
mean out-of-fold R2 is maximum.

2.7. Function arescvc

Purpose:
Finds the “best” value for penalty c of the Generalized Cross-Validation criterion from a set of

candidate values using Cross-Validation assuming that all the other parameters of function
aresparams would stay fixed. For a better alternative to using this function, see Section 3.3.

Call:
[cBest, results] = arescvc(X, Y, trainParams, cTry, k, shuffle, nCross,

weights, testWithWeights, verbose)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Note that, if argument shuffle is set to true, this function employs random number generator
for which you can set seed before calling the function.

Input:
X, Y : The data. See description of function aresbuild.
trainParams : A structure of training parameters (see function aresparams for details).
cTry : A set of candidate values for c. (default value = 1:5)
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle : Whether to shuffle the order of the observations before performing Cross-

Validation. (default value = true)
nCross : How many times to repeat Cross-Validation with different data

partitioning. This can be used to get more stable results. Default value = 1,
i.e., no repetition. Useless if shuffle = false.

weights : A vector of weights for observations. See description of function
aresbuild.

testWithWeights : Set to true to use weights vector for both, training and testing. Set to
false to use it for training only. This argument has any effect only when
weights vector is provided. (default value = true)

verbose : Whether to output additional information to console. (default value =
true)

Output:
cBest : The best found value for penalty c.

15

results : A matrix with two columns. First column contains all values from cTry.
Second column contains the calculated MSE values (averaged across all
Cross-Validation folds) for the corresponding cTry values.

Remarks:
This function finds the “best” penalty c value in a clever way. In each Cross-Validation

iteration, the forward phase in aresbuild is done only once while the backward phase is done
separately for each cTry value. The results will be the same as if each time a full model building
process would be performed because in the forward phase the GCV criterion is not used. Except if
aresparams parameter terminateWhenInfGCV is set to true – in that case the results may
sometimes slightly differ.

2.8. Function aresplot

Purpose:
Plots ARES model. For datasets with one input variable, plots the model together with its knot

locations. For datasets with more than one input variable, plots 3D surface. If idx is not provided,
checks if the model uses more than one variable and, if not, plots in 2D even if the dataset has more
than one input variable.

For multi-response modelling, supply one submodel at a time.

Call:
fh = aresplot(model, idx, vals, minX, maxX, gridSize, showKnots, varargin)

All the input arguments, except the first one, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
idx : Only used when the number of input variables is larger than two. This is a

vector containing two indices for the two variables values of which are to
be varied in the plot (default value = [1 2]).

vals : Only used when the number of input variables is larger than two. This is a
vector of fixed values for all the input variables (except that the values for
the varied variables are not used). By default, continuous variables are
fixed at (minX + maxX) / 2 but binary variables (according to
model.isBinary) are fixed at minX.

minX, maxX : Minimum and maximum values for each input variable (this is the same
type of data as in model.minX and model.maxX). By default, those values
are taken from model.minX and model.maxX.

gridSize : Grid size for the plot. Default value is 400 for 2D plots and 50 for 3D
plots.

showKnots : Whether to show knots in the plot (default value is true for data with one
input variable and false otherwise). Showing knot locations in 3D plots is
experimental feature. In a 3D plot, knots for basis functions without
interactions are represented as planes with white edges while knots for
basis functions with interactions are represented as 90-degrees “broken
planes” with black edges. The directions of the broken planes depend on
directions of hinge functions in the corresponding basis functions. Planes
for each new knot (or pair of knots) are shown using a new color and a new
vertical offset so that they are easier to distinguish. Unfortunately,

16

coincident planes flicker; though it helps seeing that there is more than one
plane.
Note that, for input variables entering linearly (i.e., without hinge
functions), 2D plots don't show any knots but 3D plots show knots at minX.

varargin : Name/value pairs of arguments passed to function plot (for 2D plots) and
function surfc (for 3D plots). May include 'XLim', 'YLim', and 'ZLim'
which are separated and passed to axes.

Output:
fh : Handle to the created figure.

2.9. Function areseq

Purpose:
Prints equations of ARES model.
For multi-response modelling, supply one submodel at a time.

Call:
eq = areseq(model, precision, varNames, binarySimple, expandParentBF,

cubicSmoothing)

All the input arguments, except the first one, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
precision : Number of digits in the model coefficients and knot sites. Default value =

15.
varNames : A cell array of variable names to show instead of the generic ones.
binarySimple : Whether to simplify basis functions that use binary input variables

(default value = false). Note that whether a variable is binary is
automatically determined during model building in aresbuild by counting
unique values for each variable in training data. Therefore a variable can
also be taken as binary by mistake if the data for some reason includes only
two values for the variable. You can correct such mistakes by editing
model.isBinary. Also note that whether a variable is binary does not
influence building of models. It's just used here to simplify equations.
The argument has no effect if the model was allowed to have input
variables to enter linearly, because then all binary variables are handled
using linear functions instead of hinge functions.

expandParentBF : A basis function that involves multiplication of two or more hinge
functions can be defined simply as a multiplication of an already existing
basis function (parent) and a new hinge function. Alternatively, it can be
defined as a multiplication of a number of hinge functions. Set
expandParentBF to false (default) for the former behaviour and to true
for the latter.

CubicSmoothing : This is for piecewise-cubic models only. Set to 'short' (default) to show
piecewise-cubic basis functions in their short mathematical form (Equation
34 in Friedman, 1991a). Set to 'full' to show all computations involved
in calculating the response value. Set to 'hide' to hide cubic smoothing
and see the model as if it would be piecewise-linear. It's easier to

17

understand the equations if smoothing is hidden. Note that, while the model
then looks like piecewise-linear, the coefficients are for the actual
piecewise-cubic model.

Output:
eq : A cell array of strings containing equations for individual basis functions

and the main model.

2.10. Function aresanova

Purpose:
Performs ANOVA decomposition of given ARES model and reports the results. For details, see

remarks below as well as Sections 3.5 and 4.3 in (Friedman, 1991a) and Sections 2.4 and 4.4 in
(Friedman, 1991b).

For multi-response modelling, supply one submodel at a time.

Call:
aresanova(model, Xtr, Ytr, weights)

Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
weights : Optional. A vector of weights for observations. The same weights that

were used when the model was built.

Remarks:
To understand the outputted table, below is an excerpt from the original paper by Jerome

Friedman (Friedman, 1991a) Section 4.3. Note that in the excerpt, starting from the mentioning of
the fourth column, all the column numbers should be increased by one. This is because aresanova
adds an additional column reporting GCV estimate of the Coefficient of Determination R2 (called
R2GCV) as suggested in (Friedman, 1991b). It estimates the proportion of variance explained when
all the basis functions comprising the ANOVA function are excluded from the model. By
comparing it to the GCV estimate of R2 for the full model, one can see the amount of reduction the
exclusion brings.

“The ANOVA decomposition is summarized by one row for each ANOVA function. The columns
represent summary quantities for each one. The first column lists the function number. The second
gives the standard deviation of the function. This gives one indication of its (relative) importance to
the overall model and can be interpreted in a manner similar to a standardized regression
coefficient in a linear model. The third column provides another indication of the importance of the
corresponding ANOVA function, by listing the GCV, score for a model with all of the basis functions
corresponding to that particular ANOVA function removed. This can be used to judge whether this
ANOVA function is making an important contribution to the model, or whether it just slightly helps
to improve the global GCV score. The fourth column gives the number of basis functions comprising
the ANOVA function while the fifth column provides an estimate of the additional number of linear
degrees-of-freedom used by including it. The last column gives the particular predictor variables
associated with the ANOVA function.”

If it is determined that by deleting a one specific ANOVA function GCV would decrease (i.e.,
model would get better) or stay about the same, you will see an exclamation mark next to the GCV
value of that ANOVA function. See remarks on aresinfo for the same situation with basis
functions.

18

2.11. Function aresanovareduce

Purpose:
Deletes all the basis functions from ARES model (without recalculating model's coefficients

and relocating additional knots of piecewise-cubic models) in which at least one used variable is not
in the given list of allowed variables. This can be used to perform ANOVA decomposition as well
as for investigation of individual and joint contributions of variables in the model, i.e., the reduced
model can then be plotted to visualize the contributions.

For multi-response modelling, supply one submodel at a time.

Call:
[model, usedBasis] = aresanovareduce(model, varsToStay, exact)

Input:
model : ARES model.
varsToStay : A vector of indices for input variables to stay in the model. The size of the

vector should be between one and the total number of input variables.
exact : Set this to true to get a model with only those basis functions where the

exact combination of variables is present (default value = false). This is
used from function aresanova.

Output:
model : Reduced ARES model.
usedBasis : Vector of original indices for basis functions still in use.

2.12. Function aresinfo

Purpose:
Takes an ARES model, prints each basis function together with MSE, GCV, and R2GCV (GCV

estimate of the Coefficient of Determination, R2) for a model from which the basis function was
removed. By default, the functions are listed in the order of decreasing GCV – bigger is better. This
can be used to judge whether, in the specific context of the given full model, a basis function is
making an important contribution, or whether it just slightly helps to improve the global GCV
score. See remarks below.

For multi-response modelling, supply one submodel at a time.

Call:
aresinfo(model, Xtr, Ytr, weights, showBF, sortByGCV, binarySimple,

expandParentBF, cubicAsLinear)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
weights : A vector of weights for observations. The same weights that were used

when the model was built.

19

showBF : Whether to show equations of basis functions or just list input variables
the basis functions are using (default value = true).

sortByGCV : Whether to list basis functions in the order of decreasing GCV or in the
order in which they were included in the model (default value = true).

binarySimple : See description of input argument of the same name for function areseq.
(default value = false).

expandParentBF : See description of input argument of the same name for function areseq.
(default value = false).

cubicAsLinear : This is for piecewise-cubic models only. Set to false (default) to show
piecewise-cubic basis functions in their own mathematical form (Equation
34 in Friedman, 1991a). Set to true to hide cubic smoothing – see the basis
functions as if the model would be piecewise-linear. It's easier to
understand the equations if smoothing is hidden. Note that, while the basis
functions then look like from a piecewise-linear model, the coefficients are
from the actual piecewise-cubic model.

Remarks:
1. If it is determined that by deleting a one specific basis function GCV would decrease (i.e.,

model would get better) or stay about the same, you will see an exclamation mark next to
the GCV value of that basis function. This can happen either because the basis function is
irrelevant or it's redundant with some other basis function(s) in the model. But note that if
more than one basis function has such mark, it does not mean that all of them should be
deleted at once or at all. Instead it means that you can try deleting them one after another
(using function aresdel) starting from the least important one, each time recalculating this
table, until all of the basis functions still left in model stop having that mark. This is similar
to what the backward pruning phase does, except that it continues until model consists only
of the intercept term and then selects the model with the best GCV from all tried sizes.

2. If you are using piecewise-cubic modelling with the default value for parameter
cubicFastLevel you may sometimes see that a basis function has an exclamation mark
even though you didn't disable the backward pruning phase and therefore all irrelevant and
redundant basis functions should be already deleted. This is because by default models are
pruned as piecewise-linear and only after pruning they become piecewise-cubic therefore it's
possible that a basis function inclusion of which previously slightly reduced GCV, suddenly
slightly increases it.

3. The column “hinges” shows types of functions that are multiplied to comprise the basis
function. Hinge functions are shown as “_/” or “_”. Linear functions for variables that
entered linearly are shown as “/”. The functions are showed in the same order as in the
column “basis function”.

2.13. Function aresimp

Purpose:
Performs input variable importance assessment and reports the results. For details, see remarks

below.
For multi-response modelling, supply one submodel at a time.

Call:
varImp = aresimp(model, Xtr, Ytr, resultsEval, weights)

The first three input arguments are required.

20

Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
resultsEval : resultsEval from function aresbuild. Do not use this argument if

model was modified by any function other than aresbuild (i.e., aresdel
or aresanovareduce).

weights : A vector of weights for observations. The same weights that were used
when the model was built.

Output:
varImp : A matrix of estimated variable importance. Rows correspond to input

variables, columns correspond to criterion used. If argument resultsEval
is not supplied or the model was not pruned, then 2nd, 3rd, and 4th
columns are NaN.

Remarks:
The output argument as well as the printed table reports estimated input variable importance in

the order as they appear in Xtr.
First column of the printed table shows indices of the input variables. This column is omitted in

output argument varImp.
Column “delGCV” reports variable importance estimations calculated according to (Friedman,

1991b) Section 4.4:
“The relative importance of a variable is defined as the square root of the GCV of the model with all
basis functions involving that variable removed, minus square root of the GCV score of the
corresponding full model, scaled so that the relative importance of the most important variable
(using this definition) has a value of 100.”

The next three columns use criteria from (Milborrow, 2016) – see Section 12.3 in “Notes on the
earth package” document. These columns are available only if resultsEval argument is supplied
and the model was pruned.

Column “nSubsets” (Milborrow, 2016):
“[The criterion] counts the number of model subsets that include the variable. Variables that are
included in more subsets are considered more important. [..] By “subsets” we mean the subsets of
terms generated by the pruning pass. There is one subset for each model size (from 1 to the size of
the selected model) and the subset is the best set of terms for that model size. [..] Only subsets that
are smaller than or equal in size to the final model are used for estimating variable importance.”

Column “subsRSS” (Milborrow, 2016):
“[The criterion] first calculates the decrease in the RSS for each subset relative to the previous
subset. (For multiple response models, RSS's are calculated over all responses.) Then for each
variable it sums these decreases over all subsets that include the variable. Variables which cause
larger net decreases in the RSS are considered more important.”

Column “subsGCV” (Milborrow, 2016):
“[This criterion] is the same, but uses the GCV instead of the RSS. Note that adding a variable can
sometimes increase the GCV. (Adding the variable has a deleterious effect on the model, as
measured in terms of its estimated predictive power on unseen data.) If that happens often enough,
the variable can have a negative total importance, and thus appear less important than unused
variables.”

For ease of interpretation, all columns, except “nSubsets”, are scaled so that the largest summed
decrease is 100.

Note that the variance of the variable importance estimates can be high – different realizations
of the data can give different estimates. Another possible approach, independent from ARESLab,
would be to employ Random Forests or Bagging with regression trees, for example using the

21

M5PrimeLab toolbox for Matlab/Octave (Jekabsons, 2016) or using TreeBagger class from
Matlab's Statistics and Machine Learning Toolbox.

2.14. Function aresdel

Purpose:
Deletes basis functions from ARES model, recalculates model's coefficients and relocates

additional knots for piecewise-cubic models (as opposed to aresanovareduce which does not
recalculate and relocate anything).

Call:
model = aresdel(model, funcsToDel, Xtr, Ytr, weights)

Input:
model : ARES model or, for multi-response modelling, a cell array of ARES

models.
funcsToDel : A vector of indices for basis functions to delete. Intercept term is not

indexed, i.e., the numbering is the same as in model.knotdims,
model.knotsites, and model.knotdirs.

Xtr, Ytr : Training data observations. The same data that was used when the model
was built.

weights : Optional. A vector of weights for observations. The same weights that
were used when the model was built.

Output:
model : Reduced ARES model.

2.15. Function aresgetknots

Purpose:
Gets all knot locations of an ARES model for the specified input variable. A knot is added to the

list only if the variable entered a basis function non-linearly, i.e., using a hinge function.

Call:
knots = aresgetknots(model, variable)

For datasets with one input variable, only the first input argument is used. For datasets with
more than one input variable, both input arguments are required.

Input:
model : ARES model or, for multi-response modelling, a cell array of ARES

models.
variable : Index of the input variable.

Output:
knots : Column vector of knot locations.

22

3. EXAMPLES OF USAGE

3.1. Ten-dimensional function with noise

We start by creating a dataset using a ten-dimensional function with added i.i.d. noise. The
dataset consists of 200 observations randomly uniformly distributed in a ten-dimensional unit
hypercube. The function actually uses only the first five variables.

X = rand(200,10);
Y = 10*sin(pi*X(:,1).*X(:,2)) + 20*(X(:,3)-0.5).^2 + ...
 10*X(:,4) + 5*X(:,5) + 0.5*randn(200,1);

Let's try a piecewise-cubic model (the default). We set the maximum number of basis functions
to 21 (including the intercept term) and limit maximum interaction level to 2 (only pairwise
products of basis functions will be allowed), leaving all the other parameters to their defaults.

For most applications, it can be expected that the most attention should be paid to the following
parameters: maxFuncs, c, cubic, maxInteractions, and maxFinalFuncs. It is quite possible that
the default values for maxFuncs and maxInteractions will be far from optimal for your data.

But note that, if you are prepared to use Cross-Validation, choosing a good value for
maxFinalFuncs can sometimes release you from being too pedantic about parameters maxFuncs
and c, because you can set large enough maxFuncs and not too large c and follow the example in
Section 3.3.

If you have the necessary domain knowledge, it is recommended to also set yesInteract,
noInteract, allowLinear, and forceLinear.

params = aresparams2('maxFuncs', 21, 'maxInteractions', 2);

ARES model is built by calling aresbuild. The function has three output arguments: the final
model (model), algorithm execution time (time), and evaluations of best models of each size in the
backward pruning phase (resultsEval). As the model building finishes, we can examine the data
structure of the final model. It has 18 basis functions including the intercept term.

[model, ~, resultsEval] = aresbuild(X, Y, params)

model =
 MSE: 0.2741
 GCV: 0.4476
 coefs: [18x1 double]
 knotdims: {17x1 cell}
 knotsites: {17x1 cell}
 knotdirs: {17x1 cell}
 parents: [17x1 double]
 trainParams: [1x1 struct]
 t1: [17x10 double]
 t2: [17x10 double]
 minX: [1x10 double]
 maxX: [1x10 double]
 isBinary: [1x10 logical]

From the returned structure model we can find out what is its Mean Squared Error (model.MSE)
and GCV (model.GCV) in the training data set. Field model.coefs gives us the list of all
coefficients in the model (starting with the intercept). In model.trainParams we can see what were
the training parameters for the method when the model was built, including the automatic choices.
And if we want to extract knot locations, we can use model.knotdims and model.knotsites for
that (or, alternatively, function aresgetknots).

23

Now let's plot, how MSE and GCV values changed during the iterations of the backward phase,
i.e., evaluations of best models of each size. Typically, the two lines are close together at first, but,
as the number of basis functions increases, GCV diverges from MSE and goes up. In our case, this
is not so apparent because of small maxFuncs.

Alternatively, we could also create such plot for R2 (Coefficient of Determination) and R2
GCV (R2

estimated by GCV) just by replacing resultsEval.MSE and resultsEval.GCV with
resultsEval.R2 and resultsEval.R2GCV.

figure;
hold on; grid on; box on;
h(1) = plot(resultsEval.MSE, 'Color', [0 0.447 0.741]);
h(2) = plot(resultsEval.GCV, 'Color', [0.741 0 0.447]);
numBF = numel(model.coefs);
h(3) = plot([numBF numBF], get(gca, 'ylim'), '--k');
xlabel('Number of basis functions');
ylabel('MSE, GCV');
legend(h, 'MSE', 'GCV', 'Selected model');

To assess input variable importance, use function aresimp. From the table, we can see that the
4th variable has the highest relative importance while the 3rd and 5th have the lowest (ignoring the
last five variables not included in the model).

aresimp(model, X, Y, resultsEval);

Estimated input variable importance:
Variable delGCV nSubsets subsRSS subsGCV
1 74.975 15 62.407 63.789
2 71.245 14 38.002 39.637
3 32.772 12 13.393 14.395
4 100.000 16 100.000 100.000
5 34.466 13 19.900 21.046
6 0.000 0 0.000 0.000 unused
7 0.000 0 0.000 0.000 unused
8 0.000 0 0.000 0.000 unused
9 0.000 0 0.000 0.000 unused
10 0.000 0 0.000 0.000 unused

Let's take a look at ANOVA decomposition using function aresanova. (Note that ARESLab
includes another function called aresinfo which is used for getting a table similar to ANOVA
decomposition but with analysis of each separate basis function.)

From the table, we can see that the last ANOVA function (the one that is associated with the 1st
and the 5th input variable) gives relatively small contribution (or even degrades performance) and
maybe its basis functions should be deleted.

24

aresanova(model, X, Y);

Type: piecewise-cubic
GCV: 0.447615
R2GCV: 0.983416
Total number of basis functions (including intercept): 18
Total effective number of parameters: 43.5
ANOVA decomposition:
Function STD GCV R2GCV #basis #params variable(s)
1 3.1351 3.4082 0.87373 2 5.0 1
2 3.7505 3.3497 0.87590 2 5.0 2
3 1.2695 2.6547 0.90165 2 5.0 3
4 2.9888 12.9544 0.52005 2 5.0 4
5 1.5241 1.3505 0.94997 2 5.0 5
6 2.5585 2.5279 0.90634 5 12.5 1 2
7 0.2853 0.4463 ! 0.98347 2 5.0 1 5

Let's say we want to delete the two basis functions comprising the 7th ANOVA function.
Deletion of basis functions can be done using function aresdel. The function requires that we
supply indices of the basis functions to delete. We can find those indices using model.knotdims. In
our case they happen to be number 16 and number 17.

model = aresdel(model, [16 17], X, Y);

Function aresplot is used for plotting ARES models. Let's make a plot using the first two input
variables. By default, aresplot fixes all other variables at the middle of their ranges (except for
binary variables – they are fixed at their lowest values).

aresplot(model, [1 2]);

We can also plot ANOVA functions if they are associated with one or two input variables. This
allows us to visualize the contributions of the ANOVA functions. Let’s plot pair-wise (for variables
x1 and x2; three ANOVA functions (one for each variable and one for the pair)) and individual (for
variables x3, x4, and x5; one ANOVA function each) contributions of variables.

modelReduced = aresanovareduce(model, [1 2]);
aresplot(modelReduced);

for i = 3 : 5
 modelReduced = aresanovareduce(model, i);
 aresplot(modelReduced, [], [], [], [], [], false);
end

25

In the last two plots, we can see that, although, in the model, variables x4 and x5 have two basis
functions each, they actually may not need any knots, i.e., their true contributions could be
completely linear. We could use parameters allowLinear or forceLinear of functions
aresparams / aresparams2 to encourage or force these variables to enter the model without hinge
functions. This would result in simpler model with less possibilities to overfit the data.

To print the equation of the model with all its basis functions, use areseq. By default, basis
functions of piecewise-cubic models are printed in their short form (see Equation 34 in Friedman,
1991a, for explanation) so that the output is more readable. But you can use input argument
cubicSmoothing to make the function print full set of computations or print the model as
piecewise-linear.

areseq(model, 5);

BF1 = C(x4|+1,0.36743,0.73434,0.86692)
BF2 = C(x4|-1,0.36743,0.73434,0.86692)
BF3 = C(x1|+1,0.24571,0.48679,0.74146)
BF4 = C(x1|-1,0.24571,0.48679,0.74146)
BF5 = C(x2|+1,0.43198,0.4357,0.46269)
BF6 = C(x2|-1,0.43198,0.4357,0.46269)
BF7 = C(x5|+1,0.16062,0.31343,0.65068)
BF8 = C(x5|-1,0.16062,0.31343,0.65068)
BF9 = C(x3|+1,0.18927,0.3774,0.54072)
BF10 = BF3 * C(x2|+1,0.46269,0.48969,0.60606)
BF11 = BF3 * C(x2|-1,0.46269,0.48969,0.60606)
BF12 = BF4 * C(x2|+1,0.22187,0.42825,0.43198)
BF13 = BF4 * C(x2|-1,0.22187,0.42825,0.43198)
BF14 = C(x3|-1,0.54072,0.70405,0.84888)
BF15 = BF3 * C(x2|+1,0.60606,0.72244,0.86076)
y = 11.712 +10.887*BF1 -9.7031*BF2 +5.8423*BF3 -15.303*BF4 +11.774*BF5 -16.99*BF6

+4.7416*BF7 -5.0294*BF8 +14.642*BF9 -36.781*BF10 -4.8324*BF11 -23.387*BF12 +37.256*BF13
+12.46*BF14 -42.375*BF15

26

To evaluate performance of our ARES configuration (without the manual edits above, of
course) using Cross-Validation, we'll use function arescv. By default, the function performs 10-
fold Cross-Validation. Note that for more stable results one should consider repeating Cross-
Validation several times (see description of the argument nCross).

rng(1);
resultsCV = arescv(X, Y, params)

resultsCV =
 MAE: 0.5089
 MSE: 0.4263
 RMSE: 0.6470
 RRMSE: 0.1304
 R2: 0.9826
 nBasis: 17.1000
 nVars: 5
 maxDeg: 2

Now let’s try piecewise-linear modelling.

params = aresparams2('maxFuncs', 21, 'maxInteractions', 2, 'cubic', false);
model = aresbuild(X, Y, params)

model =
 MSE: 0.2996
 GCV: 0.4893
 coefs: [18x1 double]
 knotdims: {17x1 cell}
 knotsites: {17x1 cell}
 knotdirs: {17x1 cell}
 parents: [17x1 double]
 trainParams: [1x1 struct]
 minX: [1x10 double]
 maxX: [1x10 double]
 isBinary: [1x10 logical]

rng(1);
resultsCV = arescv(X, Y, params)

resultsCV =
 MAE: 0.5763
 MSE: 0.5338
 RMSE: 0.7242
 RRMSE: 0.1459
 R2: 0.9782
 nBasis: 17.1000
 nVars: 5
 maxDeg: 2

Finally, we print the equation of the piecewise-linear model with all its basis functions (note that
this time we did not delete basis functions 16 and 17).

areseq(model, 5);

BF1 = max(0, x4 -0.73434)
BF2 = max(0, 0.73434 -x4)
BF3 = max(0, x1 -0.48679)
BF4 = max(0, 0.48679 -x1)
BF5 = max(0, x2 -0.4357)
BF6 = max(0, 0.4357 -x2)
BF7 = max(0, x5 -0.31343)
BF8 = max(0, 0.31343 -x5)
BF9 = max(0, x3 -0.3774)
BF10 = BF3 * max(0, x2 -0.48969)
BF11 = BF3 * max(0, 0.48969 -x2)
BF12 = BF4 * max(0, x2 -0.42825)
BF13 = BF4 * max(0, 0.42825 -x2)

27

BF14 = max(0, 0.70405 -x3)
BF15 = BF3 * max(0, x2 -0.72244)
BF16 = BF7 * max(0, x1 -0.86869)
BF17 = BF7 * max(0, 0.86869 -x1)
y = 11.664 +10.758*BF1 -9.708*BF2 +8.5785*BF3 -13.385*BF4 +9.838*BF5 -15.279*BF6

+6.2628*BF7 -4.3835*BF8 +13.418*BF9 -32.827*BF10 -13.016*BF11 -16.532*BF12 +32.427*BF13
+11.22*BF14 -45.029*BF15 -46.087*BF16 -2.493*BF17

3.2. Two-dimensional function without noise

We start by creating training and test data using a two-dimensional noise-free function. The
training data consists of 121 observations distributed in a regular 11×11 grid. The test data has
10000 observations distributed randomly.

clear
[X1,X2] = meshgrid(-1:0.2:1, -1:0.2:1);
X(:,1) = reshape(X1, numel(X1), 1);
X(:,2) = reshape(X2, numel(X2), 1);
clear X1 X2;
Y = sin(0.83*pi*X(:,1)) .* cos(1.25*pi*X(:,2));
Xt = rand(10000,2);
Yt = sin(0.83*pi*Xt(:,1)) .* cos(1.25*pi*Xt(:,2));

There is no noise and the data is plenty – we can hope for a very accurate model. We set the
maximum number of basis functions to 101 (including the intercept term), no penalty for knots, and
maximum interaction level equal to 2 (the number of input variables), leaving all the other
parameters to their defaults. For noise-free data one could also consider decreasing useMinSpan and
useEndSpan but for our dataset this would have little to no effect because each dimension in the
dataset has only 11 distinct x values each repeated 11 times – by default, for datasets this small, the
algorithm jumps over very few observations and therefore in most cases all of the available
locations would be considered for knot placement anyway.

params = aresparams2('maxFuncs', 101, 'c', 0, 'maxInteractions', 2);

We build ARES model by calling aresbuild. Our model that has 48 basis functions including
the intercept term.

model = aresbuild(X, Y, params)

model =
 MSE: 1.5734e-04
 GCV: 4.3227e-04
 coefs: [48x1 double]
 knotdims: {47x1 cell}
 knotsites: {47x1 cell}
 knotdirs: {47x1 cell}
 parents: [47x1 double]
 trainParams: [1x1 struct]
 t1: [47x2 double]
 t2: [47x2 double]
 minX: [-1 -1]
 maxX: [1 1]
 isBinary: [0 0]

28

Test the model using the test data.

results = arestest(model, Xt, Yt)

results =
 MAE: 0.0115
 MSE: 2.0000e-04
 RMSE: 0.0141
 RRMSE: 0.0253
 R2: 0.9994

Plot the model.

aresplot(model);

Finally, let’s try doing the same but instead of piecewise-cubic modelling we'll do piecewise-
linear.

params = aresparams2('maxFuncs', 101, 'c', 0, 'maxInteractions', 2, 'cubic', false);
model = aresbuild(X, Y, params);
results = arestest(model, Xt, Yt)

results =
 MAE: 0.0409
 MSE: 0.0023
 RMSE: 0.0482
 RRMSE: 0.0862
 R2: 0.9926

aresplot(model);

29

3.3. Using Cross-Validation to select the number of basis functions

One of the ways to select the “best” number of basis functions for final ARES model (i.e.,
argument maxFinalFuncs for functions aresparams / aresparams2) or to confirm that the GCV
criterion is indeed making good choices, is to evaluate backward pruning phase's best candidate
models of each size using Cross-Validation and compare which would be chosen by GCV and
which by Cross-Validation.

This can be done using function arescv by setting its argument evalPruning to true. In each
Cross-Validation iteration, a new ARES model is built and pruned as usual using the GCV in the in-
fold (training) data, but additionally, in the pruning phase, for the best candidate model of each size
the function also calculates out-of-fold (test) data MSE (MSEoof). Now for each model we have an
estimate of prediction Mean Squared Error by both, in-fold GCV as well as out-of-fold MSEoof.

Let's try this with the data from Section 3.1. We will use 10-fold Cross-Validation. Note that for
more stable results one should consider repeating Cross-Validation several times (this can be set up
using the argument nCross).

params = aresparams2('maxFuncs', 51, 'maxInteractions', 2);
rng(1);
[resultsTotal, resultsFolds, resultsPruning] = ...
 arescv(X, Y, params, [], [], [], [], [], true);

Here's code for plotting the results:

figure;
hold on; grid on; box on;
for i = 1 : size(resultsPruning.GCV,1)
plot(resultsPruning.GCV(i,:), ':', 'Color', [0.259 0.706 1]);
plot(resultsPruning.MSEoof(i,:), ':', 'Color', [1 0.259 0.706]);
end
plot(resultsPruning.meanGCV, 'Color', [0 0.447 0.741], 'LineWidth', 2);
plot(resultsPruning.meanMSEoof, 'Color', [0.741 0 0.447], 'LineWidth', 2);

ylim = get(gca, 'ylim');
posY = resultsPruning.meanGCV(resultsPruning.nBasisGCV);
plot([resultsPruning.nBasisGCV resultsPruning.nBasisGCV], [ylim(1) posY], '--', 'Color', [0 0.447 0.741]);
plot(resultsPruning.nBasisGCV, posY, 'o', 'MarkerSize', 8, 'Color', [0 0.447 0.741]);
posY = resultsPruning.meanMSEoof(resultsPruning.nBasisMSEoof);
plot([resultsPruning.nBasisMSEoof resultsPruning.nBasisMSEoof], [ylim(1) posY], '--', 'Color', [0.741 0 0.447]);
plot(resultsPruning.nBasisMSEoof, posY, 'o', 'MarkerSize', 8, 'Color', [0.741 0 0.447]);

xlabel('Number of basis functions');
ylabel('GCV, MSE_{oof}');

The ten blue dotted lines show the GCV for models of each fold. The blue solid line is the mean
GCV for each model size (i.e., the average of the blue dotted lines). The ten pink dotted lines show

30

the MSEoof for models of each fold. The pink solid line is the mean MSEoof for each model size (i.e.,
the average of the pink dotted lines).

The two vertical dashed lines are at the minimum of the two solid lines, i.e., they show the
optimum number of basis functions estimated by GCV (blue) and Cross-Validation (pink). Ideally,
the two vertical lines would coincide. In practice, they are usually close but not identical. In our
case the two lines are at 25 (for GCV) and 18 (for MSEoof). This information can be used to set the
number of basis functions for final ARES model (maxFinalFuncs). But note that if the best number
estimated by Cross-Validation is considerably larger than the best number estimated by GCV or if
the best number is very near to the largest available, one should first consider allowing building
more complex models, e.g., by decreasing GCV penalty per knot c and/or increasing maxFuncs.

Such statistics can also be generated for different values of c to see how the parameter
influences the selection of the final model. Just call arescv once for each considered value of c and
compare the graphs.

Finally, a note about piecewise-cubic models. Because all the aforementioned model
evaluations are done in the actual backward pruning phase, by default they are calculated for
piecewise-linear models even if in the end you are getting piecewise-cubic models. That is correct
behaviour because by default all ARES models are first built as piecewise-linear and turned into
piecewise-cubic only after the backward phase (Friedman, 1991a). Still, you can change this
behaviour by setting cubicFastLevel for aresparams to 1 or 0.

3.4. Parameters useMinSpan and useEndSpan

In this section, we'll take a look at examples showing how important it can sometimes be to set
your own values for aresparams parameters useMinSpan and useEndSpan.

The first dataset consists of 21 evenly distributed observations generated using sinus function
and i.i.d. noise.

X = (0:0.05:1)' * pi * 3;
Y = sin(X) + randn(21,1) * 0.1;
Xsin = (0:0.01:1)' * pi * 3;
Ysin = sin(Xsin);

We'll build an ARES model using the default parameters. As can be seen in the first plot below,
it does not model the data very well (red curve is the true function, blue curve is our model). Notice
how all three knots are concentrated at the middle of the data range. In fact, with the default values
for useMinSpan and useEndSpan, the three locations used by those knots are the only locations
available to aresbuild for knot placement. This is because, for one-dimensional data of this size,
the default values for those parameters are useMinSpan = 3 and useEndSpan = 7 meaning that for
knot placement we have every 3rd location from 21 – 7 – 7 = 7.

params = aresparams2();
model = aresbuild(X, Y, params);
aresplot(model,[],[],[],[],[],[],'LineWidth',2,'XLim',[0,pi*3],'YLim',[-1.5,1.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20); plot(Xsin, Ysin, '-r');

Because of the noise in the data, it could be risky to turn useMinSpan and useEndSpan off
completely (the bigger the noise, the bigger the risk in lowering those values). Let's set them both to
2. Now the algorithm will have 9 locations for knot placement (every 2nd location from
21 – 2 – 2 = 17). As can be seen in the second plot below, that made the model considerably better.

params = aresparams2('useMinSpan', 2, 'useEndSpan', 2);
model = aresbuild(X, Y, params);
aresplot(model,[],[],[],[],[],[],'LineWidth',2,'XLim',[0,pi*3],'YLim',[-1.5,1.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20); plot(Xsin, Ysin, '-r');

31

The second dataset consists of 21 evenly distributed observations generated using a step
function without any noise. With accurate knot locations, we should be able to model it perfectly.

X = (0:0.05:1)';
Y = [ones(1,7)*3 ones(1,7) ones(1,7)*2]';

We'll build an ARES model using the default parameters, except that we don't need piecewise-
cubic modelling. As can be seen in the first plot below, it uses just one knot location in the middle
of data range and therefore can't model the data very well.

params = aresparams2('cubic', false);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);

Setting useMinSpan and useEndSpan to 2, like for the previous dataset, is still not enough,
because, while the first and the last knot is placed correctly, the algorithm jumps over the other
needed knot locations. See the second plot below.

params = aresparams2('cubic', false, 'useMinSpan', 2, 'useEndSpan', 2);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);

Let's set useMinSpan to 1 (effectively turning it off) so that every location can be considered for
knot placement. Now the data is modelled perfectly (see the third plot below). Note that actually it
is enough to set useEndSpan to 6 because the first and the last six observations can be safely
ignored.

params = aresparams2('cubic', false, 'useMinSpan', 1, 'useEndSpan', 6);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);

32

4. REFERENCES

1. Friedman J.H. Multivariate Adaptive Regression Splines (with discussion), The Annals of
Statistics, Vol. 19, No. 1, 1991a

2. Friedman J.H. Estimating functions of mixed ordinal and categorical variables using adaptive
splines, Technical Report No. 108, Laboratory for Computational Statistics, Department of
Statistics, Stanford University, 1991b

3. Friedman J.H. Fast MARS, Department of Statistics, Stanford University, Tech. Report
LCS110, 1993

4. Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: Data mining, inference
and prediction, 2nd edition, Springer, 2009

5. Jekabsons G., M5PrimeLab: M5' regression tree, model tree, and tree ensemble toolbox for
Matlab/Octave, 2016, available at http://www.cs.rtu.lv/jekabsons/

6. Merkwirth C. and Wichard J. A Matlab toolbox for ensemble modelling, 2003, available at
http://www.j-wichard.de

7. Milborrow S., Earth: Multivariate Adaptive Regression Spline Models (derived from code by T.
Hastie and R. Tibshriani), 2016, R package available at http://cran.r-
project.org/src/contrib/Descriptions/earth.html

8. Rudy J., py-earth: A Python implementation of Jerome Friedman's Multivariate Adaptive
Regression Splines, 2016, available at https://github.com/jcrudy/py-earth

33

