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1. INTRODUCTION

What is ARESLab

ARESLab  is  a  Matlab/Octave  toolbox  for  building  piecewise-linear  and  piecewise-cubic
regression  models  using  the  Multivariate  Adaptive  Regression  Splines  method  (also  known as
MARS).  (The  term “MARS” is  a  registered  trademark  and  thus  not  used  in  the  name  of  the
toolbox.) The author of the MARS method is Jerome Friedman (Friedman, 1991a; Friedman, 1993).

With this  toolbox you can build MARS models (hereafter referred to as ARES models) for
single-response and multi-response data, test them on separate test sets or using Cross-Validation,
use the models for prediction, print their equations, perform ANOVA decomposition, assess input
variable importance, as well as plot the models.

This user's manual provides overview of the functions available in the ARESLab.
ARESLab can be downloaded at http://www.cs.rtu.lv/jekabsons/.
The toolbox code is licensed under the GNU GPL ver. 3 or any later version. Some parts of

functions aresbuild and createList were initially derived from ENTOOL toolbox (Merkwirth &
Wichard, 2003) which also falls under the GPL licence.

Details

ARESLab toolbox is written entirely in Matlab/Octave.  The MARS method is  implemented
according  to  the  Friedman's  original  papers  (Friedman,  1991a;  Friedman,  1993).  The  knot
placement algorithm is implemented very similarly to R package  earth  (Milborrow, 2016) (see
description of useMinSpan and useEndSpan and remarks in Section 2.2).

One major difference is that the model building is not accelerated using the “fast least-squares
update  technique”  (Friedman,  1991a).  This  difference  however  affects  only  the  speed  of  the
algorithm execution, not predictive performance of the built models.

The absence of the acceleration means that the code might be slow for large data sets (however,
see description  of  aresparams on how to make the process faster  by using the “Fast  MARS”
algorithm and/or setting more conservative values for algorithm parameters). An alternative is to
use the open source package earth for R which is faster and in some aspects more sophisticated,
however  currently  lacks  the  ability  to  create  piecewise-cubic  models.  Yet  another  open source
alternative is py-earth for Python (Rudy, 2016).

ARESLab does not automatically handle missing data or categorical input variables with more
than two categories. Such categorical variables must be replaced with synthetic binary variables
before using ARESLab, for example using function dummyvar.

Feedback

For any feedback on the toolbox including bug reports feel free to contact me via the email
address given on the title page of this user's manual.

Citing the ARESLab toolbox

Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, 2016, available
at http://www.cs.rtu.lv/jekabsons/
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2. AVAILABLE FUNCTIONS

ARESLab toolbox provides the following list of functions:
 aresbuild – builds an ARES model;
 aresparams, aresparams2 – creates  a structure of ARES configuration parameters  for

further use with aresbuild, arescv, and arescvc functions;
 arespredict – makes predictions using ARES model;
 arestest – tests ARES model on a test data set;
 arescv –  tests  ARES  performance  using  Cross-Validation;  has  additional  built-in

capabilities for finding the “best” number of basis functions for an ARES model;
 arescvc – finds the “best” value for penalty c of the Generalized Cross-Validation criterion

from a set of candidate values using Cross-Validation;
 aresplot – plots ARES model, can visualize knot locations;
 areseq – prints equations of ARES model;
 aresanova – performs ANOVA decomposition;
 aresanovareduce – reduces ARES model according to ANOVA decomposition;
 aresinfo – lists basis functions of ARES model and tries to assess their relevance;
 aresimp – estimates input variable importance;
 aresdel – deletes basis functions from ARES model;
 aresgetknots – gets all knot locations of an ARES model for the specified input variable.

2.1. Function aresbuild

Purpose:
Builds a regression model using the Multivariate Adaptive Regression Splines method.

Call:
[model, time, resultsEval] = aresbuild(Xtr, Ytr, trainParams, weights, keepX,

modelOld, dataEval, verbose)

All the input arguments, except the first two, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
Xtr, Ytr :  Xtr is  a  matrix  with rows corresponding to observations  and columns

corresponding to input variables. Ytr is either a column vector of response
values or, for multi-response data, a matrix with columns corresponding to
response  variables.  The structure  of  the output  of  this  function  changes
depending on whether Ytr is a vector or a matrix (see below).
Xtr type must be double.  Ytr type must be double or logical (internally
converted  to  double).  Categorical  variables  in  Xtr with  more  than  two
categories must be replaced with synthetic binary variables before using
aresbuild (or any other ARESLab function), for example using function
dummyvar.
For  multi-response  data,  each  model  will  have  the  same  set  of  basis
functions  but  different  coefficients.  The models  are  built  and pruned as
usual but with the Residual Sum of Squares and GCVs summed across all
responses. Since all the models are optimized simultaneously,  the results
for each model  won't  be as good as building the models  independently.

4



However, the combined model may be better in other senses, depending on
what you are trying to achieve. For example, it could be useful to select the
set of basis functions that is best across all responses.
It is recommended to pre-scale Xtr values to [0,1] (Friedman, 1991a). This
is because widely different locations and scales for the input variables can
cause  instabilities  that  could  affect  the  quality  of  the  final  model.  The
MARS method is (except for numerics) invariant to the locations and scales
of the input variables. It is therefore reasonable to perform a transformation
that causes resulting locations and scales to be most favourable from the
point of view of numeric stability (Friedman, 1991a).
For multi-response modelling, it is recommended to pre-scale Ytr values so
that  each  response  variable  gets  the  appropriate  weight  during  model
building. A variable with higher variance will influence the results more
than a variable with lower variance (Milborrow, 2016).

trainParams :  A structure  of  training  parameters  for  the  algorithm.  If  not  provided,
default values will be used (see function aresparams for details).

weights : A vector of observation weights. The length of the vector must be the
same as the number of observations in Xtr and Ytr. The weights must be
nonnegative.

keepX : Set to true to retain basis matrix model.X (see description of model.X).
For multi-response modelling, the matrix will be replicated for each model.
(default value = false)

modelOld : If an already built ARES model is provided (whether pruned or not), no
forward  phase  will  be  done.  Instead  the  provided  model  will  be  taken
directly to the backward phase and pruned. This is useful for fast tuning of
parameters of the backward phase (c, cubic, maxFinalFuncs). Note that
this is also a much faster way of changing a piecewise-linear model into a
piecewise-cubic model or vice versa instead of building a new model from
scratch. This argument is also used by function arescvc for fast selection
of the “best” value for penalty c using Cross-Validation.

dataEval : A structure containing test data in fields  X,  Y, and, optionally,  weights.
Used for getting evaluations for the best candidate models of each size in
the backward pruning phase. For example, arescv uses it to help choosing
a good value for the number of basis functions using Cross-Validation (see
example of usage in Section 3.3). Results are saved in fields  R2test and
MSEtest of output argument resultsEval.

verbose :  Whether  to  output  additional  information  to  console  (default  value  =
true).

Output:
model : A single ARES model for single-response  Ytr or a cell array of ARES

models  for  multi-response  Ytr.  A structure  defining  one  model  has  the
following fields:

coefs : Coefficients vector of the regression model (first, for the intercept term,
and then for all the rest of basis functions). Because of the coefficient for
the intercept term, this vector is one row longer than the others.

knotdims :  Cell  array  of  indices  of  used  input  variables  for  knots  in  each  basis
function.

knotsites : Cell array of knot sites for each knot and used input variable in each basis
function. knotdims and knotsites together contain all the information for
locating  the  knots.  If  a  variable  entered  a  basis  function  linearly  (i.e.,
without hinge function), the knot site for that variable is set to minX.
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knotdirs : Cell array of directions (-1 or 1) of the hinge functions for each used input
variable  in  each  basis  function.   If  a  variable  entered  a  basis  function
linearly (i.e., without hinge function), the direction for that variable is set to
2.

parents : Vector of indices of direct parents for each basis function (0 if there is no
direct parent).

trainParams :  A  structure  of  training  parameters  for  the  algorithm.  The  values  are
updated if chosen automatically. Except useMinSpan, because in automatic
mode it is calculated for each parent basis function separately.

MSE : Mean Squared Error of the model in the training data set.
GCV : Generalized Cross-Validation of the model in the training data set. The

value may also be Inf if model’s effective number of parameters (see Eq.
1) is larger than or equal to the number of observations in the training data.

t1, t2 : For piecewise-cubic models only. Matrix of sites for the additional side
knots on the left and on the right of the central knot.

minX, maxX : Vectors defining the ranges of the input variables determined from the
training data.

isBinary : A vector indicating binary input variables. Determined automatically by
counting  unique  values  for  each  variable  in  training  data.  Therefore  a
variable can also be taken as binary by mistake if the data for some reason
included only two values for the variable. Note that whether a variable is
binary does not influence building of the model. This vector is further used
in other functions to simplify printed equations.

X :  Basis  matrix.  Contains  values  of  basis  functions  applied  to  Xtr.  The
number of columns in X is equal to the number of rows in coefs, i.e., the
first  column  is  for  the  intercept  (all  ones)  and  all  the  other  columns
correspond  to  the  basis  functions  defined  by  knotdims,  knotsites,
knotdirs, t1, and t2. Each row corresponds to a row in Xtr. Multiplying
X by coefs gives ARES prediction for Ytr. This variable is available only
if argument keepX is set to true.

time : Algorithm execution time (in seconds).
resultsEval : Model evaluation results from the backward pruning phase. Fields R2test

and MSEtest are available only if input argument  dataEval is not empty.
The structure has the following fields:

MSE : MSE (Mean Squared Error) in training data for the best candidate model
of each size.

R2 : R2 (Coefficient of Determination) in training data for the best candidate
model of each size.

GCV :  GCV  (Generalized  Cross-Validation)  in  training  data  for  the  best
candidate  model  of  each  size.  Contains  Inf values  for  models  with
effective number of parameters larger than the number of observations in
training data.

R2GCV : R2 estimated by GCV in training data for the best candidate model of each
size. Contains -Inf values for models with effective number of parameters
larger than the number of observations in training data.

R2test : R2 in dataEval test data for the best candidate model of each size.
MSEtest : MSE in dataEval test data for the best candidate model of each size.

Note  that  if  trainParams.cubic =  true,  values  of  these  fields  are
calculated  using  piecewise-linear  models  if
trainParams.cubicFastLevel =  2  and  piecewise-cubic  models  if
trainParams.cubicFastLevel < 2.
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usedVars :  Logical  matrix  showing  which  input  variables  were  used  in  the  best
candidate model of each size.

Remarks:
The algorithm builds a model in two phases: forward selection and backward deletion. In the

forward phase, the algorithm starts with a model consisting of just the intercept term and iteratively
adds reflected pairs of basis functions giving the largest reduction of training error. The forward
phase is executed until one of the following conditions is met:

1) reached maximum number of basis functions (trainParams.maxFuncs);
2) adding a new basis function changes R2 by less than trainParams.threshold;
3) reached a R2 of 1 – trainParams.threshold or more;
4) the number of coefficients in the model (i.e., the number of basis functions including the

intercept term) has reached the number of data observations n;
5) optionally  –  model's  effective  number  of  parameters  has  reached  the  number  of  data

observations n (see description of trainParams.terminateWhenInfGCV for details).
At the end of the forward phase we have a large model which typically overfits the data, and so

a backward deletion phase is engaged. In the backward phase, the model is simplified by deleting
one least important basis function (i.e., deletion of which reduces training error the least) at a time
until the model has only the intercept term. At the end of the backward phase, from those “best”
models of each size (except models larger than  trainParams.maxFinalFuncs), the one with the
lowest Generalized Cross-Validation (GCV) is selected and outputted as the final one.

GCV, as an estimator for prediction Mean Squared Error, for an ARES model is calculated as
follows (Friedman, 1991a; Hastie et al., 2009; Milborrow, 2016):

2

1 





 

n

enp
MSEGCV train , (1)

where  MSEtrain is  Mean  Squared  Error  of  the  model  in  the  training  data,  n is  the  number  of
observations in the training data, and enp is the effective number of parameters:

  2/1 kckenp , (2)
where  k is  the number  of  basis  functions  in  the model  (including  the  intercept  term)  and  c is
trainParams.c.  Note  that    2/1k  is  the  number  of  hinge  function  knots,  so  the  formula
penalizes the model not only for its number of basis functions but also for its number of knots. Also
note that in the situation when  nenp   the GCV value is set  to  Inf (the model  is considered
infinitely bad).

2.2. Function aresparams

Purpose:
Creates configuration for building ARES models. The output structure is for further use with

aresbuild, arescv, and arescvc functions.

Call:
trainParams  =  aresparams(maxFuncs,  c,  cubic,  cubicFastLevel,

selfInteractions,  maxInteractions,  threshold,  prune,  fastK,  fastBeta,  fastH,
useMinSpan,  useEndSpan,  maxFinalFuncs,  endSpanAdjust,  newVarPenalty,
terminateWhenInfGCV, yesInteract, noInteract, allowLinear, forceLinear)

All  the  input  arguments  of  this  function  are  optional.  Empty  values  are  also  accepted  (the
corresponding defaults will be used).

Parameters  prune and  maxFinalFuncs are used in the backward pruning phase. Parameters  c
and  cubic may be used in both phases depending on terminateWhenInfGCV,  forceLinear, and
cubicFastLevel. All other parameters are used in the forward phase only.
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For many applications, it can be expected that the most attention should be paid to the following
parameters:  maxFuncs,  maxInteractions,  cubic,  c, and maxFinalFuncs. It is quite possible that
the default values for maxFuncs and maxInteractions will be far from optimal for your data.

But  note  that,  if  you  are  prepared  to  use  Cross-Validation,  choosing  a  good  value  for
maxFinalFuncs can sometimes release you from being too pedantic about parameters  maxFuncs
and c, because you can set large enough maxFuncs and not too large c and follow the example in
Section 3.3.

If  you have the necessary domain  knowledge,  it  is  recommended to also set  yesInteract,
noInteract, allowLinear, and forceLinear.

Input:
maxFuncs : The maximum number of basis functions included in model in the forward

building  phase  (before  pruning  in  the  backward  phase).  Includes  the
intercept  term.  The recommended value for this  parameter  is  about  two
times the expected number of basis functions in the final model (Friedman,
1991a). Note that the algorithm may also not reach this number if some
other  termination  condition  happens  first  (see  remarks  on  function
aresbuild in Section 2.1). The default value for maxFuncs is -1 in which
case  it  is  calculated  automatically  using  formula
min(200, max(20, 2d)) + 1,  where  d is  the  number  of  input  variables
(Milborrow,  2016).  This  is  fairly  arbitrary  but  can  be  useful  for  first
experiments.
To enforce an upper bound on the final model size, use  maxFinalFuncs
instead. This is because the forward phase can see only one basis function
ahead while the backward pruning phase can choose any of the built basis
functions to include in the final model.

c : Generalized Cross-Validation (GCV) penalty per knot. Larger values for c
will  lead  to  fewer  knots  (i.e.,  the  final  model  will  have  fewer  basis
functions). A value of 0 penalizes only terms, not knots (can be useful, e.g.,
with lots of data, low or no noise, and highly structured underlying function
of the data). Generally, the choice of the value for c should greatly depend
on size of the dataset, how structured is the underlying function, and how
high  is  the  noise  level,  and  mildly  depend  on  the  thoroughness  of  the
optimization  procedure,  i.e.,  on  the  parameters  maxFuncs,
maxInteractions, and useMinSpan (Friedman, 1991a). Simulation studies
suggest values for  c in the range of about 2 to 4 (Friedman, 1991a). The
default  value  for  this  parameter  is  -1  in  which  case  c is  chosen
automatically using the following rule: if  maxInteractions = 1 (additive
modelling)  c = 2, otherwise  c = 3. These are the values recommended in
Friedman, 1991a.

cubic : Whether to use piecewise-cubic (true) or piecewise-linear (false) type
of modelling. In general, it is expected that the piecewise-cubic modelling
will give better predictive performance for smoother and less noisy data.
(default value = true)

cubicFastLevel : aresbuild implements three levels of piecewise-cubic modelling. In level
0, cubic modelling for each candidate model is done in both phases of the
method (slow). In level 1, cubic modelling is done only in the backward
phase (much faster). In level 2, cubic modelling is done after both phases,
only for the final model (fastest). The default level is 2 (and it corresponds
to the recommendations in Friedman, 1991a). Levels 0 and 1 may bring
extra accuracy in the situations when, e.g., the underlying function of the
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data has sharp thresholds that for piecewise-cubic modelling require knot
placements different that those required for piecewise-linear modelling.

selfInteractions : This is experimental feature. The maximum degree of self interactions for
any input  variable.  It  can be set  larger  than 1 only for  piecewise-linear
modelling. The default, and recommended, value = 1, no self interactions.

maxInteractions :  The maximum degree of interactions between input variables.  Set to 1
(default)  for additive modelling (i.e.,  no interaction terms).  For maximal
interactivity  between  the  variables,  set  the  parameter  to
d×selfInteractions, where d is the number of input variables – this way
the modelling procedure will have the most freedom building a complex
model.  Set  to  -1,  so  that  aresbuild sets  it  automatically  equal  to  d
(maximal interactivity when self interactions are not used).

threshold : One of the stopping criteria for the forward phase (see remarks section of
function aresbuild for details). Default value = 1e-4. For noise-free data,
the  value  may  be  lowered  (e.g.,  to  1e-6)  but  setting  it  to  0  can  cause
numerical issues and instability.

prune : Whether to perform model pruning (the backward phase). (default value =
true)

fastK : Parameter (integer) for Fast MARS algorithm (Friedman, 1993, Section
3.0). Maximum number of parent basis functions considered at each step of
the forward phase. Typical values for fastK are 20, 10, 5 (default value =
Inf, i.e., no Fast MARS). With lower fastK values model building is faster
at the expense of some accuracy. Good starting values for exploratory work
are  fastK = 20,  fastBeta = 1,  fastH = 5 (Friedman, 1993). Friedman in
his paper concluded that changing the values of fastK and fastH can have
big  effect  on  training  computation  times  but  predictive  performance  is
largely unaffected over a wide range of their values (Friedman, 1993).

fastBeta :  Artificial  ageing  factor  for  Fast  MARS  algorithm  (Friedman,  1993,
Section 3.1). Typical value for  fastBeta is 1 (default value = 0, i.e., no
artificial ageing). The parameter is ignored if fastK = Inf.

fastH : Parameter (integer) for Fast MARS algorithm (Friedman, 1993, Section
4.0). Number of iterations till next full optimization over all input variables
for  each  parent  basis  function.  Larger  values  make  the  search  faster.
Typical  values  for  fastH are  1,  5,  10  (default  value  =  1,  i.e.,  full
optimization in every iteration). Computational reduction associated with
increasing  fastH is  most  pronounced  for  data  sets  with  many  input
variables and when large  fastK is used. There seems to be little gain in
increasing fastH beyond 5 (Friedman, 1993). The parameter is ignored if
fastK = Inf.

useMinSpan : In order to lower the local variance of the estimates, a minimum span is
imposed that  makes the method resistant  to runs of positive or negative
error values between knots (by taking every useMinSpan-th observation for
knot  placement)  (Friedman,  1991a).  Setting  useMinSpan to  -1 (default),
enables automatic mode (see remarks below). Setting useMinSpan to 0 or
1, disables the protection so that all the observations are considered for knot
placement (except, see  useEndSpan). Setting  useMinSpan to > 1, enables
manual tuning of the value. Disabling or lowering useMinSpan may allow
creating a model which is more responsive to local variations in the data
(can be especially useful if the number of data observations is small and
noise  is  low)  however  this  can  also  lead  to  overfitting.  For  further
information and examples of usage, see Section 3.4.
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useEndSpan : In order to lower the local variance of the estimates near the ends of data
intervals, a minimum span is imposed that makes the method resistant to
runs of positive or negative error values between extreme knot locations
and the corresponding ends of data intervals (by not allowing to place knots
too  near  to  the  ends  of  the  intervals)  (Friedman,  1991a).  Setting
useEndSpan to -1 (default), enables automatic mode that chooses value for
this parameter depending on the number of input variables (but never lower
than 7).  Setting  useEndSpan to 0, disables the protection so that all  the
observations are considered for knot placement (except, see useMinSpan).
Setting useEndSpan to > 1, enables manual tuning of the value. Disabling
or  lowering  useEndSpan may  allow  creating  a  model  which  is  more
responsive to local variations near the edges of the data (can be especially
useful  if  the  number  of  data  observations  is  small  and  noise  is  low)
however  this  can  also  lead  to  overfitting.  For  further  information  and
examples of usage, see remarks below and Section 3.4.

maxFinalFuncs : Maximum number of basis functions (including the intercept term) in the
final  pruned  model  (default  value  =  Inf).  Use  this  (rather  than  the
maxFuncs parameter) to enforce an upper bound on the final model size.
See Section 3.3 for an example on how to choose value for this parameter
using Cross-Validation.

endSpanAdjust : For basis functions with variable interactions, useEndSpan gets multiplied
by  this  value.  This  reduces  probability  of  getting  overfitted  interaction
terms  supported  by  just  a  few  observations  on  the  boundaries  of  data
intervals. Still, at least one knot will always be allowed in the middle, even
if  endSpanAdjust would prohibit  it.  Useful  values  range from 1 to  10.
(default value = 1, i.e., no adjustment)

newVarPenalty : Penalty for adding a new variable to a model in the forward phase. This is
the gamma parameter of Eq. 74 in the original paper (Friedman, 1991a).
The higher is the penalty, the more reluctant will be the forward phase to
add a new variable to the model – it will rather try to use variables already
in the model.  This can be useful when some of the variables are highly
collinear. As a result, the final model may be easier to interpret although
usually  the  built  models  also  will  have  worse  predictive  performance.
Useful non-zero values typically range from 0.01 to 0.2 (Milborrow, 2016).
(default value = 0, i.e., no penalty)

terminateWhenInfGCV :  Whether to check termination condition,  terminating forward phase
when the effective number of parameters of a model reaches the number of
observations in training data, i.e., when GCV for such large models would
be  Inf (see  remarks  section  in  description  of  function  aresbuild on
GCV). In such cases it could be pointless to continue because larger models
wouldn't be considered as candidates for final model anyway. On the other
hand, some of the added basis functions could still turn out to be useful for
inclusion in final model. Note that the effective number of parameters is not
the same as the number of regression coefficients, except when  c = 0 (in
which  case  enabling  terminateWhenInfGCV has  no  additional  effect).
(default value = false)

yesInteract : A matrix indicating pairs of input variables that are allowed to interact
with each other in the ARES model. The matrix must have two columns.
Each row is a pair of indices for the input variables. Default value =  [].
Cannot be used together with noInteract.

noInteract : A matrix indicating pairs of input variables that are not allowed to interact
with each other in the ARES model. The matrix must have two columns.
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Each row is a pair of indices for the input variables. Default value =  [].
Cannot be used together with yesInteract.

allowLinear :  Whether to allow input variables  to enter basis functions  linearly,  i.e.,
without hinge functions. Such basis functions are added to the model one at
a time, as opposed to basis functions with new hinges that are added two at
a time – one for each hinge of the reflected pair. Set  allowLinear to 0
(default),  to  disallow  variables  entering  linearly,  i.e.,  consider  hinge
functions only (except see forceLinear). Set to 1, to allow, and treat error
reduction associated with adding such basis function the same way as for a
pair  of  basis  functions  with  new  hinges.  Set  to  2,  to  prefer  variables
entering basis functions linearly. This is done by calculating error reduction
of  such  basis  functions  using  GCV  (instead  of  sum  of  squared  error),
resulting in preference of adding a single basis function instead of two even
when  this  produces  slightly  smaller  error  reduction.  Note  that  the  R
package earth (Milborrow, 2016) has options “0” and “1” while py-earth
(Rudy, 2016) has options “0” and “2”.

forceLinear : A vector of indices of input variables that should be forced to enter the
model  only  linearly,  i.e.,  without  hinge  functions.  This  overrides
allowLinear for the listed variables. Note that forceLinear does not say
that a variable must enter the model; only that if it enters, it enters linearly.
Also note that it has nothing to do with whether a variable is allowed to
interact with other variables. Default value = [].

Output:
trainParams : A structure of parameters for further use with  aresbuild,  arescv, and

arescvc functions  containing  the  provided  values  (or  defaults,  if  not
provided).

Remarks:
The knot placement algorithm in aresbuild is implemented very similarly to R package earth

(Milborrow, 2016). useMinSpan and useEndSpan are calculated using formulas given in Eq. 45 and
Eq.  43  of  the  Friedman's  original  paper  (Friedman,  1991a)  with  alpha = 0.05.  For  a  fixed
dimensionality of the data, useEndSpan always stays the same but useMinSpan is recalculated for
each individual parent basis function used for generating new basis functions. The knots are placed
symmetrically so that there are approximately equal number of skipped observations at each end of
data intervals. For further information and examples of usage, see Section 3.4.

If more speed is required, try using the Fast MARS algorithm by setting  fastK parameter to
something other than Inf. Good starting values for exploratory work are fastK = 20, fastBeta = 1,
fastH = 5 (Friedman, 1993). For more information, see descriptions of the mentioned parameters
and the Friedman's paper.

Alternatively, for more speed you can try some of the following options (if they are adequate for
your situation):

1) decreasing maxFuncs (less iterations in forward phase);
2) setting cubicFastLevel = 2 (faster computations; has effect on piecewise-cubic modelling

only);
3) decreasing selfInteractions (less candidate models in forward phase);
4) decreasing maxInteractions (less candidate models in forward phase);
5) enabling terminateWhenInfGCV (sometimes less iterations in forward phase);
6) setting yesInteract or noInteract so that the algorithm doesn't waste it's time on needless

interactions between input variables (less candidate models in forward phase);
7) setting forceLinear for input variables you are sure should enter the model only linearly,

i.e., without hinge functions (less candidate models in forward phase);
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8) manually  increasing  useMinSpan and/or  useEndSpan (less  candidate  models  in  forward
phase);

9) increasing threshold (not recommended; less iterations in forward phase).
Note that decreasing the number of iterations or candidate models may also result in worse final

models.

2.3. Function aresparams2

Purpose:
Creates configuration for building ARES models. The output structure is for further use with

aresbuild, arescv, and arescvc functions.
This function is an alternative to function aresparams for supplying parameters as name/value

pairs.

Call:
trainParams = aresparams2(varargin)

Input:
varargin :  Name/value  pairs  for  the  parameters.  For  the  list  of  the  names,  see

description of function aresparams.

Output:
trainParams : A structure of parameters for further use with  aresbuild,  arescv, and

arescvc functions  containing  the  provided  values  (or  defaults,  if  not
provided).

2.4. Function arespredict

Purpose:
Predicts response values for the given query points using ARES model.

Call:
[Yq, BX] = arespredict(model, Xq)

Input:
model :  ARES model  or,  for  multi-response  modelling,  a  cell  array  of  ARES

models.
Xq : A matrix of query data points.

Output:
Yq : Either a column vector of predicted response values or, for multi-response

modelling, a matrix with columns corresponding to response variables.
BX : Basis matrix. Contains values of basis functions applied to Xq.

2.5. Function arestest

Purpose:
Tests ARES model on a test data set (Xtst, Ytst).
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Call:
results = arestest(model, Xtst, Ytst, weights)

Input:
model :  ARES model  or,  for  multi-response  modelling,  a  cell  array  of  ARES

models.
Xtst, Ytst :  Xtst is  a  matrix  with rows corresponding to testing observations,  and

columns corresponding to input variables. Ytst is either a column vector of
response  values  or,  for  multi-response  data,  a  matrix  with  columns
corresponding to response variables.

weights : Optional.  A  vector  of  weights  for  observations.  See  description  of
function aresbuild.

Output:
results : A structure of different error measures calculated on the test data set. For

multi-response data, all error measures are given for each model separately
in a row vector. The structure has the following fields:

MAE : Mean Absolute Error.
MSE : Mean Squared Error.
RMSE : Root Mean Squared Error.
RRMSE : Relative Root Mean Squared Error.
R2 : Coefficient of Determination.

2.6. Function arescv

Purpose:
Tests ARES performance using k-fold Cross-Validation.
The function has additional built-in capabilities for finding the “best” number of basis functions

for the final ARES model (maxFinalFuncs for function  aresparams). See example of usage in
Section 3.3 for details.

Call:
[resultsTotal, resultsFolds, resultsPruning] = arescv(X, Y, trainParams, k,

shuffle, nCross, weights, testWithWeights, evalPruning, verbose)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Note that, if argument shuffle is set to true, this function employs random number generator
for which you can set seed before calling the function.

Input:
X, Y : The data. See description of function aresbuild.
trainParams : A structure of training parameters (see function aresparams for details).
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle :  Whether  to shuffle the order of observations  before performing Cross-

Validation. (default value = true)
nCross :  How  many  times  to  repeat  Cross-Validation  with  different  data

partitioning. This can be used to get more stable results. Default value = 1,
i.e., no repetition. Useless if shuffle = false.
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weights :  A  vector  of  weights  for  observations.  See  description  of  function
aresbuild.

testWithWeights : Set to  true to use  weights vector for both, training and testing. Set to
false to use it for training only. This argument has any effect only when
weights vector is provided. (default value = true)

evalPruning : Whether to evaluate all the candidate models of the pruning phase. If set
to  true,  the output  argument  resultsPruning contains  the results.  See
example of usage in Section 3.3. (default value = false)

verbose :  Whether  to  output  additional  information  to  console.  (default  value  =
true)

Output:
resultsTotal : A structure of Cross-Validation results. The results are averaged across

Cross-Validation  folds  and,  in  case  of  multi-response  data,  also  across
multiple models.

resultsFolds :  A structure  of  vectors  or  matrices  (in  case  of  multi-response  data)  of
results  for  each  Cross-Validation  fold.  Columns  correspond  to  Cross-
Validation folds. Rows correspond to models.

Both structures have the following fields:
MAE : Mean Absolute Error.
MSE : Mean Squared Error.
RMSE : Root Mean Squared Error.
RRMSE :  Relative  Root  Mean  Squared  Error.  Not  reported  for  Leave-One-Out

Cross-Validation.
R2 :  Coefficient  of  Determination.  Not  reported  for  Leave-One-Out  Cross-

Validation.
nBasis : Number of basis functions in model (including the intercept term).
nVars : Number of input variables included in model.
maxDeg : Highest degree of variable interactions in model.

resultsPruning : Available only if evalPruning = true. See example of usage in Section
3.3. The structure has the following fields:

GCV : A matrix of GCV values for best candidate models of each size at each
Cross-Validation fold. The number of rows is equal to k×nCross. Column
index corresponds to the number of basis functions in a model.

meanGCV :  A vector  of  mean  GCV values  for  each  model  size  across  all  Cross-
Validation folds.

nBasisGCV : The number of basis functions (including the intercept term) for which the
mean GCV is minimum.

MSEoof :  A matrix of out-of-fold MSE values for best candidate models of each
size at each Cross-Validation fold. The number of rows for this matrix is
equal  to  k×nCross.  Column  index  corresponds  to  the  number  of  basis
functions in a model.

meanMSEoof : A vector of mean out-of-fold MSE values for each model size across all
Cross-Validation folds.

nBasisMSEoof : The number of basis functions (including the intercept term) for which the
mean out-of-fold MSE is minimum.

R2GCV : A matrix of R2
GCV (R2 estimated by GCV in training data) values for best

candidate models of each size at each Cross-Validation fold. The number of
rows is equal to  k×nCross. Column index corresponds to the number of
basis functions in a model.
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meanR2GCV :  A vector  of  mean  R2
GCV values  for  each model  size  across  all  Cross-

Validation folds.
nBasisR2GCV : The number of basis functions (including the intercept term) for which the

mean R2
GCV is maximum.

R2oof : A matrix of out-of-fold R2 values for best candidate models of each size at
each Cross-Validation fold. The number of rows for this matrix is equal to
k×nCross. Column index corresponds to the number of basis functions in a
model.

meanR2oof :  A vector of mean out-of-fold R2 values for each model  size across all
Cross-Validation folds.

nBasisR2oof : The number of basis functions (including the intercept term) for which the
mean out-of-fold R2 is maximum.

2.7. Function arescvc

Purpose:
Finds the “best” value for penalty c of the Generalized Cross-Validation criterion from a set of

candidate  values  using  Cross-Validation  assuming  that  all  the  other  parameters  of  function
aresparams would stay fixed. For a better alternative to using this function, see Section 3.3.

Call:
[cBest,  results]  =  arescvc(X,  Y,  trainParams,  cTry,  k,  shuffle,  nCross,

weights, testWithWeights, verbose)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Note that, if argument shuffle is set to true, this function employs random number generator
for which you can set seed before calling the function.

Input:
X, Y : The data. See description of function aresbuild.
trainParams : A structure of training parameters (see function aresparams for details).
cTry : A set of candidate values for c. (default value = 1:5)
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle : Whether to shuffle the order of the observations before performing Cross-

Validation. (default value = true)
nCross : How  many  times  to  repeat  Cross-Validation  with  different  data

partitioning. This can be used to get more stable results. Default value = 1,
i.e., no repetition. Useless if shuffle = false.

weights :  A  vector  of  weights  for  observations.  See  description  of  function
aresbuild.

testWithWeights : Set to  true to use  weights vector for both, training and testing. Set to
false to use it for training only. This argument has any effect only when
weights vector is provided. (default value = true)

verbose :  Whether  to  output  additional  information  to  console.  (default  value  =
true)

Output:
cBest : The best found value for penalty c.
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results : A matrix with two columns. First column contains all values from cTry.
Second column contains the calculated MSE values (averaged across all
Cross-Validation folds) for the corresponding cTry values.

Remarks:
This  function  finds  the  “best”  penalty  c value  in  a  clever  way.  In  each  Cross-Validation

iteration,  the forward phase in  aresbuild is done only once while the backward phase is done
separately for each cTry value. The results will be the same as if each time a full model building
process would be performed because in the forward phase the GCV criterion is not used. Except if
aresparams parameter  terminateWhenInfGCV is  set  to  true –  in  that  case  the  results  may
sometimes slightly differ.

2.8. Function aresplot

Purpose:
Plots ARES model. For datasets with one input variable, plots the model together with its knot

locations. For datasets with more than one input variable, plots 3D surface. If idx is not provided,
checks if the model uses more than one variable and, if not, plots in 2D even if the dataset has more
than one input variable.

For multi-response modelling, supply one submodel at a time.

Call:
fh = aresplot(model, idx, vals, minX, maxX, gridSize, showKnots, varargin)

All the input arguments, except the first one, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
idx : Only used when the number of input variables is larger than two. This is a

vector containing two indices for the two variables values of which are to
be varied in the plot (default value = [1 2]).

vals : Only used when the number of input variables is larger than two. This is a
vector of fixed values for all the input variables (except that the values for
the  varied  variables  are  not  used).  By default,  continuous  variables  are
fixed  at  (minX + maxX) / 2  but  binary  variables  (according  to
model.isBinary) are fixed at minX.

minX, maxX : Minimum and maximum values for each input variable (this is the same
type of data as in model.minX and model.maxX). By default, those values
are taken from model.minX and model.maxX.

gridSize : Grid size for the plot. Default value is 400 for 2D plots and 50 for 3D
plots.

showKnots : Whether to show knots in the plot (default value is true for data with one
input variable and false otherwise). Showing knot locations in 3D plots is
experimental  feature.  In  a  3D  plot,  knots  for  basis  functions  without
interactions  are  represented  as  planes  with  white  edges  while  knots  for
basis  functions  with  interactions  are  represented  as  90-degrees  “broken
planes” with black edges. The directions of the broken planes depend on
directions of hinge functions in the corresponding basis functions. Planes
for each new knot (or pair of knots) are shown using a new color and a new
vertical  offset  so  that  they  are  easier  to  distinguish.  Unfortunately,
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coincident planes flicker; though it helps seeing that there is more than one
plane.
Note  that,  for  input  variables  entering  linearly  (i.e.,  without  hinge
functions), 2D plots don't show any knots but 3D plots show knots at minX.

varargin : Name/value pairs of arguments passed to function plot (for 2D plots) and
function  surfc (for 3D plots). May include  'XLim',  'YLim', and  'ZLim'
which are separated and passed to axes.

Output:
fh : Handle to the created figure.

2.9. Function areseq

Purpose:
Prints equations of ARES model.
For multi-response modelling, supply one submodel at a time.

Call:
eq  =  areseq(model,  precision,  varNames,  binarySimple,  expandParentBF,

cubicSmoothing)

All the input arguments, except the first one, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
precision : Number of digits in the model coefficients and knot sites. Default value =

15.
varNames : A cell array of variable names to show instead of the generic ones.
binarySimple :  Whether  to  simplify  basis  functions  that  use  binary  input  variables

(default  value  =  false).  Note  that  whether  a  variable  is  binary  is
automatically determined during model building in aresbuild by counting
unique values for each variable in training data. Therefore a variable can
also be taken as binary by mistake if the data for some reason includes only
two  values  for  the  variable.  You  can  correct  such  mistakes  by  editing
model.isBinary.  Also  note  that  whether  a  variable  is  binary  does  not
influence building of models. It's just used here to simplify equations.
The  argument  has  no  effect  if  the  model  was  allowed  to  have  input
variables to enter  linearly,  because then all  binary variables  are handled
using linear functions instead of hinge functions.

expandParentBF :  A  basis  function  that  involves  multiplication  of  two  or  more  hinge
functions can be defined simply as a multiplication of an already existing
basis function (parent) and a new hinge function. Alternatively,  it can be
defined  as  a  multiplication  of  a  number  of  hinge  functions.  Set
expandParentBF to false (default) for the former behaviour and to true
for the latter.

CubicSmoothing : This is for piecewise-cubic models only. Set to 'short' (default) to show
piecewise-cubic basis functions in their short mathematical form (Equation
34 in Friedman, 1991a). Set to 'full' to show all computations involved
in calculating the response value. Set to  'hide' to hide cubic smoothing
and  see  the  model  as  if  it  would  be  piecewise-linear.  It's  easier  to
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understand the equations if smoothing is hidden. Note that, while the model
then  looks  like  piecewise-linear,  the  coefficients  are  for  the  actual
piecewise-cubic model.

Output:
eq : A cell array of strings containing equations for individual basis functions

and the main model.

2.10. Function aresanova

Purpose:
Performs ANOVA decomposition of given ARES model and reports the results. For details, see

remarks below as well as Sections 3.5 and 4.3 in (Friedman, 1991a) and Sections 2.4 and 4.4 in
(Friedman, 1991b).

For multi-response modelling, supply one submodel at a time.

Call:
aresanova(model, Xtr, Ytr, weights)

Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
weights :  Optional.  A vector of weights for observations. The same weights that

were used when the model was built.

Remarks:
To understand the  outputted  table,  below is  an  excerpt  from the  original  paper  by Jerome

Friedman (Friedman, 1991a) Section 4.3. Note that in the excerpt, starting from the mentioning of
the fourth column, all the column numbers should be increased by one. This is because aresanova
adds an additional column reporting GCV estimate of the Coefficient of Determination R2 (called
R2GCV) as suggested in (Friedman, 1991b). It estimates the proportion of variance explained when
all  the  basis  functions  comprising  the  ANOVA  function  are  excluded  from  the  model.  By
comparing it to the GCV estimate of R2 for the full model, one can see the amount of reduction the
exclusion brings.

“The ANOVA decomposition is summarized by one row for each ANOVA function. The columns
represent summary quantities for each one. The first column lists the function number. The second
gives the standard deviation of the function. This gives one indication of its (relative) importance to
the  overall  model  and  can  be  interpreted  in  a  manner  similar  to  a  standardized  regression
coefficient in a linear model. The third column provides another indication of the importance of the
corresponding ANOVA function, by listing the GCV, score for a model with all of the basis functions
corresponding to that particular ANOVA function removed. This can be used to judge whether this
ANOVA function is making an important contribution to the model, or whether it just slightly helps
to improve the global GCV score. The fourth column gives the number of basis functions comprising
the ANOVA function while the fifth column provides an estimate of the additional number of linear
degrees-of-freedom used by including it. The last column gives the particular predictor variables
associated with the ANOVA function.”

If it is determined that by deleting a one specific ANOVA function GCV would decrease (i.e.,
model would get better) or stay about the same, you will see an exclamation mark next to the GCV
value  of  that  ANOVA  function.  See  remarks  on  aresinfo for  the  same  situation  with  basis
functions.
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2.11. Function aresanovareduce

Purpose:
Deletes all the basis functions from ARES model (without recalculating model's coefficients

and relocating additional knots of piecewise-cubic models) in which at least one used variable is not
in the given list of allowed variables. This can be used to perform ANOVA decomposition as well
as for investigation of individual and joint contributions of variables in the model, i.e., the reduced
model can then be plotted to visualize the contributions.

For multi-response modelling, supply one submodel at a time.

Call:
[model, usedBasis] = aresanovareduce(model, varsToStay, exact)

Input:
model : ARES model.
varsToStay : A vector of indices for input variables to stay in the model. The size of the

vector should be between one and the total number of input variables.
exact : Set this to true to get a model with only those basis functions where the

exact combination of variables is present (default value =  false). This is
used from function aresanova.

Output:
model : Reduced ARES model.
usedBasis : Vector of original indices for basis functions still in use.

2.12. Function aresinfo

Purpose:
Takes an ARES model, prints each basis function together with MSE, GCV, and R2GCV (GCV

estimate of the Coefficient of Determination, R2) for a model from which the basis function was
removed. By default, the functions are listed in the order of decreasing GCV – bigger is better. This
can be used to judge whether, in the specific context of the given full model, a basis function is
making an important  contribution,  or whether  it  just  slightly helps to improve the global  GCV
score. See remarks below.

For multi-response modelling, supply one submodel at a time.

Call:
aresinfo(model,  Xtr,  Ytr,  weights,  showBF,  sortByGCV,  binarySimple,

expandParentBF, cubicAsLinear)

All the input arguments, except the first three, are optional. Empty values are also accepted (the
corresponding defaults will be used).

Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
weights : A vector of weights for observations. The same weights that were used

when the model was built.
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showBF : Whether to show equations of basis functions or just list input variables
the basis functions are using (default value = true).

sortByGCV : Whether to list basis functions in the order of decreasing GCV or in the
order in which they were included in the model (default value = true).

binarySimple : See description of input argument of the same name for function areseq.
(default value = false).

expandParentBF : See description of input argument of the same name for function areseq.
(default value = false).

cubicAsLinear : This is for piecewise-cubic models only. Set to  false (default) to show
piecewise-cubic basis functions in their own mathematical form (Equation
34 in Friedman, 1991a). Set to true to hide cubic smoothing – see the basis
functions  as  if  the  model  would  be  piecewise-linear.  It's  easier  to
understand the equations if smoothing is hidden. Note that, while the basis
functions then look like from a piecewise-linear model, the coefficients are
from the actual piecewise-cubic model.

Remarks:
1. If it is determined that by deleting a one specific basis function GCV would decrease (i.e.,

model would get better) or stay about the same, you will see an exclamation mark next to
the GCV value of that basis function. This can happen either because the basis function is
irrelevant or it's redundant with some other basis function(s) in the model. But note that if
more than one basis function has such mark, it does not mean that all of them should be
deleted at once or at all. Instead it means that you can try deleting them one after another
(using function aresdel) starting from the least important one, each time recalculating this
table, until all of the basis functions still left in model stop having that mark. This is similar
to what the backward pruning phase does, except that it continues until model consists only
of the intercept term and then selects the model with the best GCV from all tried sizes.

2. If  you  are  using  piecewise-cubic  modelling  with  the  default  value  for  parameter
cubicFastLevel you may sometimes see that a basis function has an exclamation mark
even though you didn't disable the backward pruning phase and therefore all irrelevant and
redundant basis functions should be already deleted. This is because by default models are
pruned as piecewise-linear and only after pruning they become piecewise-cubic therefore it's
possible that a basis function inclusion of which previously slightly reduced GCV, suddenly
slightly increases it.

3. The column “hinges” shows types of functions that are multiplied to comprise the basis
function.  Hinge functions  are  shown as “_/” or “\_”.  Linear  functions  for variables  that
entered linearly are shown as “/”. The functions are showed in the same order as in the
column “basis function”.

2.13. Function aresimp

Purpose:
Performs input variable importance assessment and reports the results. For details, see remarks

below.
For multi-response modelling, supply one submodel at a time.

Call:
varImp = aresimp(model, Xtr, Ytr, resultsEval, weights)

The first three input arguments are required.
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Input:
model : ARES model.
Xtr, Ytr : Training data observations. The same data that was used when the model

was built.
resultsEval :  resultsEval from function  aresbuild. Do  not  use  this  argument  if

model was modified by any function other than aresbuild (i.e.,  aresdel
or aresanovareduce).

weights : A vector of weights for observations. The same weights that were used
when the model was built.

Output:
varImp :  A matrix  of  estimated  variable  importance.  Rows correspond to  input

variables, columns correspond to criterion used. If argument resultsEval
is  not  supplied  or  the  model was  not  pruned,  then  2nd,  3rd,  and  4th
columns are NaN.

Remarks:
The output argument as well as the printed table reports estimated input variable importance in

the order as they appear in Xtr.
First column of the printed table shows indices of the input variables. This column is omitted in

output argument varImp.
Column “delGCV” reports variable importance estimations calculated according to (Friedman,

1991b) Section 4.4:
“The relative importance of a variable is defined as the square root of the GCV of the model with all
basis  functions  involving  that  variable  removed,  minus  square  root  of  the  GCV  score  of  the
corresponding full  model,  scaled so that the relative importance of the most  important variable
(using this definition) has a value of 100.”

The next three columns use criteria from (Milborrow, 2016) – see Section 12.3 in “Notes on the
earth package” document. These columns are available only if resultsEval argument is supplied
and the model was pruned.

Column “nSubsets” (Milborrow, 2016):
“[The criterion] counts the number of model subsets that include the variable. Variables that are
included in more subsets are considered more important. [..] By “subsets” we mean the subsets of
terms generated by the pruning pass. There is one subset for each model size (from 1 to the size of
the selected model) and the subset is the best set of terms for that model size. [..] Only subsets that
are smaller than or equal in size to the final model are used for estimating variable importance.”

Column “subsRSS” (Milborrow, 2016):
“[The criterion] first calculates the decrease in the RSS for each subset relative to the previous
subset.  (For  multiple  response models,  RSS's  are calculated over  all  responses.)  Then for  each
variable it sums these decreases over all subsets that include the variable. Variables which cause
larger net decreases in the RSS are considered more important.”

Column “subsGCV” (Milborrow, 2016):
“[This criterion] is the same, but uses the GCV instead of the RSS. Note that adding a variable can
sometimes  increase  the  GCV.  (Adding  the  variable  has  a  deleterious  effect  on  the  model,  as
measured in terms of its estimated predictive power on unseen data.) If that happens often enough,
the variable can have a negative total importance, and thus appear less important than unused
variables.”

For ease of interpretation, all columns, except “nSubsets”, are scaled so that the largest summed
decrease is 100.

Note that the variance of the variable importance estimates can be high – different realizations
of the data can give different estimates. Another possible approach, independent from ARESLab,
would  be  to  employ Random Forests  or  Bagging with  regression  trees,  for  example  using  the
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M5PrimeLab  toolbox  for  Matlab/Octave  (Jekabsons,  2016)  or  using  TreeBagger  class  from
Matlab's Statistics and Machine Learning Toolbox.

2.14. Function aresdel

Purpose:
Deletes  basis  functions  from  ARES  model,  recalculates  model's  coefficients  and  relocates

additional  knots  for  piecewise-cubic  models  (as  opposed to  aresanovareduce which  does  not
recalculate and relocate anything).

Call:
model = aresdel(model, funcsToDel, Xtr, Ytr, weights)

Input:
model :  ARES model  or,  for  multi-response  modelling,  a  cell  array  of  ARES

models.
funcsToDel :  A vector of indices for basis  functions to delete.  Intercept  term is  not

indexed,  i.e.,  the  numbering  is  the  same  as  in  model.knotdims,
model.knotsites, and model.knotdirs.

Xtr, Ytr : Training data observations. The same data that was used when the model
was built.

weights :  Optional.  A vector of weights for observations. The same weights that
were used when the model was built.

Output:
model : Reduced ARES model.

2.15. Function aresgetknots

Purpose:
Gets all knot locations of an ARES model for the specified input variable. A knot is added to the

list only if the variable entered a basis function non-linearly, i.e., using a hinge function.

Call:
knots = aresgetknots(model, variable)

For datasets with one input variable, only the first input argument is used. For datasets with
more than one input variable, both input arguments are required.

Input:
model :  ARES model  or,  for  multi-response  modelling,  a  cell  array  of  ARES

models.
variable : Index of the input variable.

Output:
knots : Column vector of knot locations.
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3. EXAMPLES OF USAGE

3.1. Ten-dimensional function with noise

We start  by creating a dataset using a ten-dimensional  function with added i.i.d. noise.  The
dataset  consists  of  200  observations  randomly  uniformly  distributed  in  a  ten-dimensional  unit
hypercube. The function actually uses only the first five variables.

X = rand(200,10);
Y = 10*sin(pi*X(:,1).*X(:,2)) + 20*(X(:,3)-0.5).^2 + ...
    10*X(:,4) + 5*X(:,5) + 0.5*randn(200,1);

Let's try a piecewise-cubic model (the default). We set the maximum number of basis functions
to  21  (including  the  intercept  term)  and  limit  maximum  interaction  level  to  2  (only  pairwise
products of basis functions will be allowed), leaving all the other parameters to their defaults.

For most applications, it can be expected that the most attention should be paid to the following
parameters:  maxFuncs,  c,  cubic,  maxInteractions, and maxFinalFuncs. It is quite possible that
the default values for maxFuncs and maxInteractions will be far from optimal for your data.

But  note  that,  if  you  are  prepared  to  use  Cross-Validation,  choosing  a  good  value  for
maxFinalFuncs can sometimes release you from being too pedantic about parameters  maxFuncs
and c, because you can set large enough maxFuncs and not too large c and follow the example in
Section 3.3.

If  you have the necessary domain  knowledge,  it  is  recommended to also set  yesInteract,
noInteract, allowLinear, and forceLinear.

params = aresparams2('maxFuncs', 21, 'maxInteractions', 2);

ARES model is built by calling aresbuild. The function has three output arguments: the final
model (model), algorithm execution time (time), and evaluations of best models of each size in the
backward pruning phase (resultsEval). As the model building finishes, we can examine the data
structure of the final model. It has 18 basis functions including the intercept term.

[model, ~, resultsEval] = aresbuild(X, Y, params)

model =
            MSE: 0.2741
            GCV: 0.4476
          coefs: [18x1 double]
       knotdims: {17x1 cell}
      knotsites: {17x1 cell}
       knotdirs: {17x1 cell}
        parents: [17x1 double]
    trainParams: [1x1 struct]
             t1: [17x10 double]
             t2: [17x10 double]
           minX: [1x10 double]
           maxX: [1x10 double]
       isBinary: [1x10 logical]

From the returned structure model we can find out what is its Mean Squared Error (model.MSE)
and  GCV  (model.GCV)  in  the  training  data  set.  Field  model.coefs gives  us  the  list  of  all
coefficients in the model (starting with the intercept). In model.trainParams we can see what were
the training parameters for the method when the model was built, including the automatic choices.
And if we want to extract knot locations, we can use model.knotdims and model.knotsites for
that (or, alternatively, function aresgetknots).
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Now let's plot, how MSE and GCV values changed during the iterations of the backward phase,
i.e., evaluations of best models of each size. Typically, the two lines are close together at first, but,
as the number of basis functions increases, GCV diverges from MSE and goes up. In our case, this
is not so apparent because of small maxFuncs.

Alternatively, we could also create such plot for R2 (Coefficient of Determination) and R2
GCV (R2

estimated  by  GCV)  just  by  replacing  resultsEval.MSE and  resultsEval.GCV with
resultsEval.R2 and resultsEval.R2GCV.

figure;
hold on; grid on; box on;
h(1) = plot(resultsEval.MSE, 'Color', [0 0.447 0.741]);
h(2) = plot(resultsEval.GCV, 'Color', [0.741 0 0.447]);
numBF = numel(model.coefs);
h(3) = plot([numBF numBF], get(gca, 'ylim'), '--k');
xlabel('Number of basis functions');
ylabel('MSE, GCV');
legend(h, 'MSE', 'GCV', 'Selected model');

To assess input variable importance, use function aresimp. From the table, we can see that the
4th variable has the highest relative importance while the 3rd and 5th have the lowest (ignoring the
last five variables not included in the model).

aresimp(model, X, Y, resultsEval);

Estimated input variable importance:
Variable    delGCV      nSubsets       subsRSS       subsGCV
1           74.975            15        62.407        63.789
2           71.245            14        38.002        39.637
3           32.772            12        13.393        14.395
4          100.000            16       100.000       100.000
5           34.466            13        19.900        21.046
6            0.000             0         0.000         0.000        unused
7            0.000             0         0.000         0.000        unused
8            0.000             0         0.000         0.000        unused
9            0.000             0         0.000         0.000        unused
10           0.000             0         0.000         0.000        unused

Let's take a look at ANOVA decomposition  using function  aresanova. (Note that ARESLab
includes another function called  aresinfo which is used for getting a table similar to ANOVA
decomposition but with analysis of each separate basis function.)

From the table, we can see that the last ANOVA function (the one that is associated with the 1st
and the 5th input variable) gives relatively small contribution (or even degrades performance) and
maybe its basis functions should be deleted.
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aresanova(model, X, Y);

Type: piecewise-cubic
GCV: 0.447615
R2GCV: 0.983416
Total number of basis functions (including intercept): 18
Total effective number of parameters: 43.5
ANOVA decomposition:
Function   STD        GCV     R2GCV #basis     #params    variable(s)
1       3.1351     3.4082   0.87373      2   5.0    1
2       3.7505     3.3497   0.87590      2   5.0    2
3       1.2695     2.6547   0.90165      2   5.0    3
4       2.9888    12.9544   0.52005      2   5.0    4
5       1.5241     1.3505   0.94997      2   5.0    5
6       2.5585     2.5279   0.90634      5  12.5    1 2
7       0.2853     0.4463 !   0.98347      2   5.0    1 5

Let's  say we want  to  delete  the  two basis  functions  comprising  the  7th  ANOVA function.
Deletion of basis functions can be done using function  aresdel.  The function requires that we
supply indices of the basis functions to delete. We can find those indices using model.knotdims. In
our case they happen to be number 16 and number 17.

model = aresdel(model, [16 17], X, Y);

Function aresplot is used for plotting ARES models. Let's make a plot using the first two input
variables. By default,  aresplot fixes all other variables at the middle of their ranges (except for
binary variables – they are fixed at their lowest values).

aresplot(model, [1 2]);

We can also plot ANOVA functions if they are associated with one or two input variables. This
allows us to visualize the contributions of the ANOVA functions. Let’s plot pair-wise (for variables
x1 and x2; three ANOVA functions (one for each variable and one for the pair)) and individual (for
variables x3, x4, and x5; one ANOVA function each) contributions of variables.

modelReduced = aresanovareduce(model, [1 2]);
aresplot(modelReduced);

for i = 3 : 5
    modelReduced = aresanovareduce(model, i);
    aresplot(modelReduced, [], [], [], [], [], false);
end
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In the last two plots, we can see that, although, in the model, variables x4 and x5 have two basis
functions  each,  they  actually  may  not  need  any  knots,  i.e.,  their  true  contributions  could  be
completely  linear.  We  could  use  parameters  allowLinear or  forceLinear of  functions
aresparams / aresparams2 to encourage or force these variables to enter the model without hinge
functions. This would result in simpler model with less possibilities to overfit the data.

To print the equation of the model with all its basis functions, use  areseq. By default, basis
functions of piecewise-cubic models are printed in their short form (see Equation 34 in Friedman,
1991a,  for  explanation)  so  that  the  output  is  more  readable.  But  you  can  use  input  argument
cubicSmoothing to  make  the  function  print  full  set  of  computations  or  print  the  model  as
piecewise-linear.

areseq(model, 5);

BF1 = C(x4|+1,0.36743,0.73434,0.86692)
BF2 = C(x4|-1,0.36743,0.73434,0.86692)
BF3 = C(x1|+1,0.24571,0.48679,0.74146)
BF4 = C(x1|-1,0.24571,0.48679,0.74146)
BF5 = C(x2|+1,0.43198,0.4357,0.46269)
BF6 = C(x2|-1,0.43198,0.4357,0.46269)
BF7 = C(x5|+1,0.16062,0.31343,0.65068)
BF8 = C(x5|-1,0.16062,0.31343,0.65068)
BF9 = C(x3|+1,0.18927,0.3774,0.54072)
BF10 = BF3 * C(x2|+1,0.46269,0.48969,0.60606)
BF11 = BF3 * C(x2|-1,0.46269,0.48969,0.60606)
BF12 = BF4 * C(x2|+1,0.22187,0.42825,0.43198)
BF13 = BF4 * C(x2|-1,0.22187,0.42825,0.43198)
BF14 = C(x3|-1,0.54072,0.70405,0.84888)
BF15 = BF3 * C(x2|+1,0.60606,0.72244,0.86076)
y = 11.712 +10.887*BF1 -9.7031*BF2 +5.8423*BF3 -15.303*BF4 +11.774*BF5 -16.99*BF6

+4.7416*BF7 -5.0294*BF8 +14.642*BF9 -36.781*BF10 -4.8324*BF11 -23.387*BF12 +37.256*BF13
+12.46*BF14 -42.375*BF15
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To  evaluate  performance  of  our  ARES  configuration  (without  the  manual  edits  above,  of
course) using Cross-Validation, we'll use function  arescv. By default, the function performs 10-
fold  Cross-Validation.  Note  that  for  more  stable  results  one  should  consider  repeating  Cross-
Validation several times (see description of the argument nCross).

rng(1);
resultsCV = arescv(X, Y, params)

resultsCV =
       MAE: 0.5089
       MSE: 0.4263
      RMSE: 0.6470
     RRMSE: 0.1304
        R2: 0.9826
    nBasis: 17.1000
     nVars: 5
    maxDeg: 2

Now let’s try piecewise-linear modelling.

params = aresparams2('maxFuncs', 21, 'maxInteractions', 2, 'cubic', false);
model = aresbuild(X, Y, params)

model =
            MSE: 0.2996
            GCV: 0.4893
          coefs: [18x1 double]
       knotdims: {17x1 cell}
      knotsites: {17x1 cell}
       knotdirs: {17x1 cell}
        parents: [17x1 double]
    trainParams: [1x1 struct]
           minX: [1x10 double]
           maxX: [1x10 double]
       isBinary: [1x10 logical]

rng(1);
resultsCV = arescv(X, Y, params)

resultsCV =
       MAE: 0.5763
       MSE: 0.5338
      RMSE: 0.7242
     RRMSE: 0.1459
        R2: 0.9782
    nBasis: 17.1000
     nVars: 5
    maxDeg: 2

Finally, we print the equation of the piecewise-linear model with all its basis functions (note that
this time we did not delete basis functions 16 and 17).

areseq(model, 5);

BF1 = max(0, x4 -0.73434)
BF2 = max(0, 0.73434 -x4)
BF3 = max(0, x1 -0.48679)
BF4 = max(0, 0.48679 -x1)
BF5 = max(0, x2 -0.4357)
BF6 = max(0, 0.4357 -x2)
BF7 = max(0, x5 -0.31343)
BF8 = max(0, 0.31343 -x5)
BF9 = max(0, x3 -0.3774)
BF10 = BF3 * max(0, x2 -0.48969)
BF11 = BF3 * max(0, 0.48969 -x2)
BF12 = BF4 * max(0, x2 -0.42825)
BF13 = BF4 * max(0, 0.42825 -x2)
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BF14 = max(0, 0.70405 -x3)
BF15 = BF3 * max(0, x2 -0.72244)
BF16 = BF7 * max(0, x1 -0.86869)
BF17 = BF7 * max(0, 0.86869 -x1)
y  =  11.664  +10.758*BF1  -9.708*BF2  +8.5785*BF3  -13.385*BF4  +9.838*BF5  -15.279*BF6

+6.2628*BF7 -4.3835*BF8 +13.418*BF9 -32.827*BF10 -13.016*BF11 -16.532*BF12 +32.427*BF13
+11.22*BF14 -45.029*BF15 -46.087*BF16 -2.493*BF17

3.2. Two-dimensional function without noise

We start by creating training and test data using a two-dimensional noise-free function. The
training data consists of 121 observations distributed in a regular 11×11 grid. The test data has
10000 observations distributed randomly.

clear
[X1,X2] = meshgrid(-1:0.2:1, -1:0.2:1);
X(:,1) = reshape(X1, numel(X1), 1);
X(:,2) = reshape(X2, numel(X2), 1);
clear X1 X2;
Y = sin(0.83*pi*X(:,1)) .* cos(1.25*pi*X(:,2));
Xt = rand(10000,2);
Yt = sin(0.83*pi*Xt(:,1)) .* cos(1.25*pi*Xt(:,2));

There is no noise and the data is plenty – we can hope for a very accurate model. We set the
maximum number of basis functions to 101 (including the intercept term), no penalty for knots, and
maximum  interaction  level  equal  to  2  (the  number  of  input  variables),  leaving  all  the  other
parameters to their defaults. For noise-free data one could also consider decreasing useMinSpan and
useEndSpan but for our dataset this would have little to no effect because each dimension in the
dataset has only 11 distinct x values each repeated 11 times – by default, for datasets this small, the
algorithm  jumps  over  very  few  observations  and  therefore  in  most  cases  all  of  the  available
locations would be considered for knot placement anyway.

params = aresparams2('maxFuncs', 101, 'c', 0, 'maxInteractions', 2);

We build ARES model by calling aresbuild. Our model that has 48 basis functions including
the intercept term.

model = aresbuild(X, Y, params)

model =
            MSE: 1.5734e-04
            GCV: 4.3227e-04
          coefs: [48x1 double]
       knotdims: {47x1 cell}
      knotsites: {47x1 cell}
       knotdirs: {47x1 cell}
        parents: [47x1 double]
    trainParams: [1x1 struct]
             t1: [47x2 double]
             t2: [47x2 double]
           minX: [-1 -1]
           maxX: [1 1]
       isBinary: [0 0]
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Test the model using the test data.

results = arestest(model, Xt, Yt)

results =
      MAE: 0.0115
      MSE: 2.0000e-04
     RMSE: 0.0141
    RRMSE: 0.0253
       R2: 0.9994

Plot the model.

aresplot(model);

Finally, let’s try doing the same but instead of piecewise-cubic modelling we'll do piecewise-
linear.

params = aresparams2('maxFuncs', 101, 'c', 0, 'maxInteractions', 2, 'cubic', false);
model = aresbuild(X, Y, params);
results = arestest(model, Xt, Yt)

results =
      MAE: 0.0409
      MSE: 0.0023
     RMSE: 0.0482
    RRMSE: 0.0862
       R2: 0.9926

aresplot(model);
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3.3. Using Cross-Validation to select the number of basis functions

One of the ways to select the “best” number of basis functions for final ARES model (i.e.,
argument  maxFinalFuncs for functions  aresparams /  aresparams2) or to confirm that the GCV
criterion is indeed making good choices, is to evaluate backward pruning phase's best candidate
models  of each size using Cross-Validation and compare which would be chosen by GCV and
which by Cross-Validation.

This can be done using function arescv by setting its argument evalPruning to true. In each
Cross-Validation iteration, a new ARES model is built and pruned as usual using the GCV in the in-
fold (training) data, but additionally, in the pruning phase, for the best candidate model of each size
the function also calculates out-of-fold (test) data MSE (MSEoof). Now for each model we have an
estimate of prediction Mean Squared Error by both, in-fold GCV as well as out-of-fold MSEoof.

Let's try this with the data from Section 3.1. We will use 10-fold Cross-Validation. Note that for
more stable results one should consider repeating Cross-Validation several times (this can be set up
using the argument nCross).

params = aresparams2('maxFuncs', 51, 'maxInteractions', 2);
rng(1);
[resultsTotal, resultsFolds, resultsPruning] = ...
    arescv(X, Y, params, [], [], [], [], [], true);

Here's code for plotting the results:

figure;
hold on; grid on; box on;
for i = 1 : size(resultsPruning.GCV,1)
plot(resultsPruning.GCV(i,:), ':', 'Color', [0.259 0.706 1]);
plot(resultsPruning.MSEoof(i,:), ':', 'Color', [1 0.259 0.706]);
end
plot(resultsPruning.meanGCV, 'Color', [0 0.447 0.741], 'LineWidth', 2);
plot(resultsPruning.meanMSEoof, 'Color', [0.741 0 0.447], 'LineWidth', 2);

ylim = get(gca, 'ylim');
posY = resultsPruning.meanGCV(resultsPruning.nBasisGCV);
plot([resultsPruning.nBasisGCV resultsPruning.nBasisGCV], [ylim(1) posY], '--', 'Color', [0 0.447 0.741]);
plot(resultsPruning.nBasisGCV, posY, 'o', 'MarkerSize', 8, 'Color', [0 0.447 0.741]);
posY = resultsPruning.meanMSEoof(resultsPruning.nBasisMSEoof);
plot([resultsPruning.nBasisMSEoof resultsPruning.nBasisMSEoof], [ylim(1) posY], '--', 'Color', [0.741 0 0.447]);
plot(resultsPruning.nBasisMSEoof, posY, 'o', 'MarkerSize', 8, 'Color', [0.741 0 0.447]);

xlabel('Number of basis functions');
ylabel('GCV, MSE_{oof}');

The ten blue dotted lines show the GCV for models of each fold. The blue solid line is the mean
GCV for each model size (i.e., the average of the blue dotted lines). The ten pink dotted lines show
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the MSEoof for models of each fold. The pink solid line is the mean MSEoof for each model size (i.e.,
the average of the pink dotted lines).

The two vertical dashed lines are at the minimum of the two solid lines, i.e., they show the
optimum number of basis functions estimated by GCV (blue) and Cross-Validation (pink). Ideally,
the two vertical lines would coincide. In practice, they are usually close but not identical. In our
case the two lines are at 25 (for GCV) and 18 (for MSEoof). This information can be used to set the
number of basis functions for final ARES model (maxFinalFuncs). But note that if the best number
estimated by Cross-Validation is considerably larger than the best number estimated by GCV or if
the best number is very near to the largest available, one should first consider allowing building
more complex models, e.g., by decreasing GCV penalty per knot c and/or increasing maxFuncs.

Such  statistics  can  also  be  generated  for  different  values  of  c to  see  how  the  parameter
influences the selection of the final model. Just call arescv once for each considered value of c and
compare the graphs.

Finally,  a  note  about  piecewise-cubic  models.  Because  all  the  aforementioned  model
evaluations  are  done in  the  actual  backward  pruning  phase,  by  default  they  are  calculated  for
piecewise-linear models even if in the end you are getting piecewise-cubic models. That is correct
behaviour because by default all ARES models are first built as piecewise-linear and turned into
piecewise-cubic  only  after  the  backward  phase  (Friedman,  1991a).  Still,  you  can  change  this
behaviour by setting cubicFastLevel for aresparams to 1 or 0.

3.4. Parameters useMinSpan and useEndSpan

In this section, we'll take a look at examples showing how important it can sometimes be to set
your own values for aresparams parameters useMinSpan and useEndSpan.

The first dataset consists of 21 evenly distributed observations generated using sinus function
and i.i.d. noise.

X = (0:0.05:1)' * pi * 3;
Y = sin(X) + randn(21,1) * 0.1;
Xsin = (0:0.01:1)' * pi * 3;
Ysin = sin(Xsin);

We'll build an ARES model using the default parameters. As can be seen in the first plot below,
it does not model the data very well (red curve is the true function, blue curve is our model). Notice
how all three knots are concentrated at the middle of the data range. In fact, with the default values
for  useMinSpan and  useEndSpan, the three locations used by those knots are the only locations
available to aresbuild for knot placement. This is because, for one-dimensional data of this size,
the default values for those parameters are useMinSpan = 3 and useEndSpan = 7 meaning that for
knot placement we have every 3rd location from 21 – 7 – 7 = 7.

params = aresparams2();
model = aresbuild(X, Y, params);
aresplot(model,[],[],[],[],[],[],'LineWidth',2,'XLim',[0,pi*3],'YLim',[-1.5,1.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20); plot(Xsin, Ysin, '-r');

Because of the noise in the data, it could be risky to turn  useMinSpan and  useEndSpan off
completely (the bigger the noise, the bigger the risk in lowering those values). Let's set them both to
2.  Now  the  algorithm  will  have  9  locations  for  knot  placement  (every  2nd  location  from
21 – 2 – 2 = 17). As can be seen in the second plot below, that made the model considerably better.

params = aresparams2('useMinSpan', 2, 'useEndSpan', 2);
model = aresbuild(X, Y, params);
aresplot(model,[],[],[],[],[],[],'LineWidth',2,'XLim',[0,pi*3],'YLim',[-1.5,1.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20); plot(Xsin, Ysin, '-r');
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The  second  dataset  consists  of  21  evenly  distributed  observations  generated  using  a  step
function without any noise. With accurate knot locations, we should be able to model it perfectly.

X = (0:0.05:1)';
Y = [ones(1,7)*3 ones(1,7) ones(1,7)*2]';

We'll build an ARES model using the default parameters, except that we don't need piecewise-
cubic modelling. As can be seen in the first plot below, it uses just one knot location in the middle
of data range and therefore can't model the data very well.

params = aresparams2('cubic', false);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);

Setting  useMinSpan and  useEndSpan to 2, like for the previous dataset,  is still  not enough,
because, while the first and the last knot is placed correctly,  the algorithm jumps over the other
needed knot locations. See the second plot below.

params = aresparams2('cubic', false, 'useMinSpan', 2, 'useEndSpan', 2);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);

Let's set useMinSpan to 1 (effectively turning it off) so that every location can be considered for
knot placement. Now the data is modelled perfectly (see the third plot below). Note that actually it
is  enough to set  useEndSpan to  6 because the first  and the last  six observations  can be safely
ignored.

params = aresparams2('cubic', false, 'useMinSpan', 1, 'useEndSpan', 6);
model = aresbuild(X, Y, params);
aresplot(model, [], [], [], [], [], [], 'LineWidth', 2, 'YLim', [0.5, 3.5]);
hold on; plot(X, Y, '.', 'MarkerSize', 20);
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